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Preface

Evolutionary computation involves the study of problem-solving and optimiza-
tion techniques inspired by principles of evolution and genetics. As any other
scientific field, its success relies on the continuity provided by new researchers
joining the field to help it progress. One of the most important sources for new
researchers is the next generation of PhD students that are actively studying
a topic relevant to this field. It is from this main observation the idea arose of
providing a platform exclusively for PhD students.

From the perspective of a PhD student, it is important to work on an exciting
topic that is of interest to other researchers in the field. Contact with these
researchers early in the study can help in guiding the course by focusing on what
other researchers deem important. Furthermore, those contacts are important for
the social network of the PhD student, which will become vital for choosing the
step following the PhD study.

We would like to stress that the work presented in the proceedings is not
that of regular papers. Instead it is a collection of works where each student has
described the project of his/her PhD thesis, and has outlined his/her achieve-
ments and goals of the PhD study. Moreover, a description is given of the desired
feedback.

This volume contains the proceedings of EvoPhD 2008, the Third Euro-
pean Graduate Student Workshop on Evolutionary Computation. It was held in
Naples, Italy on 27 March 2008, as part of the EvoWorkshops 2008, which are
part of Evo?: Europe’s premier multi-conference and multi-workshop event on
evolutionary computation and relating methodologies.

We would like to acknowledge the work performed by the Program Com-
mittee, who has made sure, with a rigorous reviewing process, that this pro-
ceedings contains scientific works of a high quality. This year, four manuscripts
were accepted for publication in the proceedings and, subsequently their authors
have presented their work at the workshop. Each manuscript was reviewed in-
dependently by three reviewers, which gave insightful comments on the work as
presented, but also on the topic itself and the proposed work and goals.

We thank Jennifer Willies for her administration of and efforts in both the
conferences and the workshops, Ivanoe De Falco, ICAR-CNR; Antonio Della
Cioppa, University of Salerno; Ernesto Tarantino, ICAR-CNR, and Giuseppe
Trautteur, University of Naples Federico II for making all the local arrangements.

March 2008 Cecilia Di Chio, Mario Giacobini and Jano van Hemert
Program Chairs EvoPhD 2008





Organisation

EvoPhD 2008 is organised as one of the workshops of the EvoWorkshops 2008,
which are part of Evo?: Europe’s premier multi-conference and multi-workshop
annual event on evolutionary computation and relating methodologies

Organising Committee

EvoPhD Chairs: Cecilia Di Chio
University of Essex, United Kingdom
Mario Giacobini
University of Torino, Italy
Jano van Hemert
University of Edinburgh, United Kingdom

EvoWorkshops Chair: Mario Giacobini
University of Torino, Italy

Local Chair: Ivanoe De Falco
ICAR-CNR, Naples, Italy

Publicity Chair: Anna I. Esparcia Alcázar
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Fitness Landscape Analysis for the Continuous

Flow-shop Scheduling Problem

Jens Czogalla (Supervisor: Andreas Fink)

Helmut-Schmidt-University / UniBw Hamburg
Holstenhofweg 85, 22043 Hamburg, Germany

czogalla@hsu-hh.de

Abstract. The fitness landscape of the continuous flow-shop scheduling
problem is investigated by examining the ruggedness of the landscape
and the correlation between the quality of a solution and its distance
to the optimal solution. The results confirm the presence of a big valley
structure as known from other combinatorial optimization problems. The
suitability of the landscape for search with evolutionary computation and
local search methods is discussed. Additionally some distance measures
for the continuous flow-shop scheduling problems are reviewed.

Key words: Evolutionary computation, Combinatorial optimization,
Continuous (no wait) flow-shop scheduling, Fitness landscape analysis

1 Introduction to the Research Area

Evolutionary computation (EC) is known to perform well on a wide variety of
hard optimization problems. It is receiving a lot of attention by practitioners
due to its applicability to a wide range of applications and straightforward op-
tions for hybridization with problem-specific procedures. In the following we will
provide a short introduction into EC and a short review of combinatorial op-
timization problems, especially the continuous (no-wait) flow-shop scheduling
problem (CFSP) which will be the topic of this paper.

1.1 Evolutionary Computation

The term EC (or EA, evolutionary algorithms) was introduced to bring together
optimization techniques simulating various aspects of evolution, namely genetic
algorithms (GA), evolution strategies (ES), and evolutionary programming (EP).
The common basic idea is that individuals of a population interact with one
another in order to create new individuals containing information inherited from
the parent solutions. Probabilistic operators such as selection, recombination,
and mutation are employed to guide the evolution process, thus evolving the
population towards better fitness values. An overview over EC is provided in,
e.g., [1, 2]. Prominent variants of EC are GA [13, 9], particle swarm optimization
(PSO) [18], and scatter search (SS) [12] which uses local search procedures as
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2 Jens Czogalla

a main feature. Current research generally shows the advantageousness of the
hybridization of EC with local search in order to obtain high-quality results; see,
e.g., [25]. See [15] for a detailed discussion on local search.

1.2 Combinatorial Optimization Problems

A combinatorial optimization problem (COP) consists of a set of solution ele-
ments which have to be combined in a way that certain conditions or constraints
are satisfied. Combinations of the solution elements form the potential solutions
of the problem and are called feasible or valid if the constraints are fulfilled. Solu-
tions are evaluated by an objective function and the goal is to find solutions with
(near) optimal objective functions values. Many (but not all) COP are computa-
tionally hard (NP-hard) and are solved by searching exponentially large search
spaces [15, pages 13–16]. We concentrate on COP with permutation-based so-
lution spaces, i.e., solutions are represented as a sequence (permutation) of the
solution elements. In this paper we consider the continuous (no wait) flow-shop
scheduling problem (CFSP) as posed by van Deman and Baker [30]. The CFSP
consists of a set of n jobs which have to be processed in an identical order on m
machines. Each machine can process exactly one job at a time. The processing
time of job i on machine j is given as tij with 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The continuous flow-shop scheduling problem includes no-wait restrictions for
the processing of each job, i.e., once the processing of a job begins, there must
not be any waiting times between the processing of any consecutive tasks of this
job. Continuous processing leads to a delay dik, 1 ≤ i ≤ n, 1 ≤ k ≤ n, i 6= k on
the first machine between the start of jobs i and k when i and k are processed
directly after each other. The delay can be computed as

dik = max
1≤j≤m

{
j∑

h=1

tih −
j∑

h=2

tk,h−1

}
. (1)

The processing order of the jobs is represented as a permutation Π =< π1, ..., πn >
where πi is the job processed at the i-th position of a schedule.

The objective considered is to minimize the total processing time (flow-time)

F (Π) =
n∑

i=2

(n + 1− i) dπ(i−1),π(i) +
n∑

i=1

m∑
j=1

tij . (2)

The first part of Equation 2 sums the implied delays; since the delay between
two jobs affects all succeeding jobs the respective delay is multiplied with the
number of following jobs. The second part is the constant total sum of processing
times. A review of the CFSP can be found in [8].

1.3 Important Research Questions and Related Work

Although the research on EC goes back as early as the mid-1950s there are
still many areas in the field of EC that are of great interest for researchers
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and practitioners. Research in this area has often opened rather then answered
questions, which consequently has lead to a widening in the range of topics.
Apparently the presentation of a complete overview is a nearly impossible task.
Therefore we will focus in this subsection just on some important questions.

The balance between traversing large parts of the search space to find re-
gions with good solutions (exploration/diversification) and the thorough search
for elitist solutions in those regions (exploitation/intensification) is one of the
fundamental issues in EC. Apparently these are partly conflicting goals. On the
one side, a diverse population is needed to explore large parts of the search space.
This may impede finding high quality solutions. On the other side, a more ho-
mogenous population should enable thorough exploitation of certain regions of
the search space. This can result in premature convergence since a loss of diver-
sity in the population may impede the creation of new individuals dominating
their parents and thus trapping the population in a region around a local opti-
mum. Recent approaches to control intensification and diversification are based
on some kind of measurement of population diversity. In [28] acceptance criteria
based on distances for the inclusion of new individuals into the population are
defined. In [25] a restart mechanism is employed in case the search process is not
able to produce new best solutions indicating a loss of diversity in the popula-
tion. In [7] we investigate the role of local search as intensification method and
its influence on population diversity.

Another important issue is the adaption of EC as a general metaheuristic to
a certain problem and classes of problems. The “no free lunch” (NFL) theorems
(see, e.g., [32]) state that if an algorithm performs well on average for one class
of problems it generally performs worse on average over the remaining prob-
lems. To adapt an algorithm to a problem the structure of the problem must be
considered for the choice and design of a particular algorithm [32]. Choosing a
proper representation, designing new domain specific operators, and hybridizing
with problem-specific heuristics and local search are ways to do so. Additionally
constraint handling techniques (e.g., penalty functions or repair algorithms) or
special population structures can increase the effectiveness of EC for a certain
problem. See [1, 2] for a detailed overview. Related to that issue is the prediction
of algorithm performance. The fitness landscape analysis [15, ch. 5], which will
be discussed in more detail in Section 3, can be used. The properties of a search
space landscape are examined in order to extract structural information which
may be used to predict the efficiency of EC components.

2 Own Research and Study

As mentioned in the previous section controlling the balance between diversifi-
cation and intensification is one of the fundamental issues in EC. So the thesis
aims at gaining a better understanding of the involved mechanisms. That is,
how recombination operators, selection methods, or local search (as intensifica-
tion method) influence the diversity and the quality of the population and thus
the search process and might be used to control it. Consequently the question

3



4 Jens Czogalla

of how to measure diversity is of interest. With the results we want to develop
approaches for controlling convergence behavior and thus improving the perfor-
mance. Secondly, we aim for getting more insight into how the structure of a
problem and the performance of EC are connected.

In [8] we investigated the critical success factors of discrete particle swarm
optimization for solving COP (CFSP). The results show that the utilization
of a combination of different recombination methods yields better solutions.
Furthermore the hybridization with a powerful local search procedure is shown
to be a requirement for obtaining high quality solutions. The fitness landscape
analysis, which is topic of Section 3, will be used in Section 4 to explain the
observed results. In [7] we examined the influence of different selection methods
and local search procedures on population diversity. We currently continue the
research on convergence behavior using the metrics reviewed in Section 3 with
the goal of implementing appropriate mechanisms to control the balance between
diversification and intensification and thus improving the performance of EC.

In the future we will also consider more challenging permutation-based com-
binatorial optimization problems, e.g., multiobjective optimization problems and
problems with additional constraints. The PhD studentship is laid out for a pe-
riod of three years with two years remaining.

3 Results

3.1 Methodology

The adaptation of a certain EC algorithm to a specific combinatorial optimiza-
tion problem (see Subsection 1.3) can benefit from the analysis of the fitness
landscape of the problem. A fitness landscape is induced by a particular operator
which defines a neighborhood structure [19]. More precisely, a fitness landscape
is a labeled, directed graph [16, ch. 2]. Since we employ two unary neighbor-
hood operators for the CFSP we can simplify Jones’s model [16]: The vertices of
the graph correspond to solutions (i.e., permutations) of the combinatorial opti-
mization problem (CFSP). A directed edge connecting vertice Π to Π ′ indicates
that Π ′ is reachable from Π with one application of the neighborhood operator
(i.e., Π is a neighbor of Π ′ under the considered neighborhood operator). The
vertices of the graph are labeled with the corresponding fitness values, giving
raise to the landscape image when thought of as heights [16, ch. 2]. Based on
this definition seven position types for points in the search space can be defined
according to the topology of their local neighborhood [15, p. 211f]:

– strict local minima (SLMIN, all neighbors have larger fitness values)
– local minima (LMIN, no neighbor has a smaller fitness value)
– interior plateau (IPLAT, all neighbors have the same fitness values)
– ledge (LEDGE, all types of neighbors)
– slope (SLOPE, no neighbor has the same fitness value)
– local maxima (LMAX, no neighbor has a larger fitness value)
– strict local maxima (SLMAX, all neighbors have smaller fitness values)
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Every search space position can be assigned to exactly one position type. For
small instance sizes the exact position type distribution can be determined by
total enumeration (see Subsection 3.3 for results). Sampling methods have to be
applied for larger instance sizes. For a detailed discussion we refer to [15, p. 213].

Several global features of fitness landscapes influence the performance of
heuristic optimization algorithms [20]. In this paper we will concentrate on sta-
tistical methods for measuring the landscape ruggedness and for analyzing the
distribution of local optima in the search space.

The ruggedness of a landscape is a measure for the correlation of fitness values
of neighboring points in the search space and for the number of local optima. It
can be used to predict the performance of local search procedures incorporated
in EC [3]. A landscape with a high density of distinct local optima is supposed
to be very rugged and hence hard to tackle by local search methods. On the
other side a smooth landscape ought to have fewer local optima enabling a local
search procedure to perform a larger number of iterations before finding a local
optimum, thus exploring larger parts of the search space [15, p. 226f]. As measure
for the ruggedness of a fitness landscape the empirical autocorrelation function
can be utilized. It provides statistical information about the correlation between
two points that are s steps apart (under a certain operator) and is calculated as

r(s) =
1

σ2(f)(m− s)

m−s∑
t=1

(f(xt)− f)(f(xt+s)− f) (3)

where f is a series of fitness values (f1, ..., fm) generated by means of a random
walk of m steps starting at a randomly selected position in the search space.
The variance of the fitness values is given by

σ2 =
1
m

m∑
k=1

(fk − f)2 (4)

with f as the average of the sequence of fitness values [15, p. 228]. The most
important correlation is the first-order correlation r(1) (or nearest-neighbor cor-
relation of the landscape) which describes the dependence between neighboring
positions. Values of r(1) that are close to one indicate that neighboring positions
tend to have a similar level of fitness values, corresponding to a smooth land-
scape. Values of r(1) close to zero suggest that there is no correlation of the fitness
values between neighboring positions, thus implicating a very rugged landscape.
Based on the empirical autocorrelation function, the correlation length l of the
landscape is defined as

l = − 1
ln(|r(1)|) for r(1) 6= 0 and r(1) 6= 1. (5)

The correlation length summarizes the ruggedness of a landscape. The larger
the correlation length, the smoother the search landscape. Since the correlation
length typically depends on instance size it is often normalized to allow the
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comparison of correlation lengths for different instance sizes and for different
neighborhood structures [15, p. 229]:

l′ =
l

diam
(6)

with diam as the diameter of the landscape graph. It is defined as the maximal
distance between any two vertices Π and Π ′, i.e., the number of edges that have
to be traversed to reach Π ′ from Π .

In [16] the fitness distance correlation (FDC) as a measure of problem diffi-
culty for EC algorithms is proposed. FDC is the correlation between the quality
of a solution and its distance to an optimal solution. In case of two or more op-
timal solutions the distance to the closest optimal solution may be considered.
Since FDC requires the definition of a distance measure we will present some
metrics for the CFSP later in this section.

The FDC states how closely fitness and distance to an optimal solution are
related. If fitness increases when the distance to the optimum becomes smaller,
the search is expected to be relatively easy for selection-based algorithms, since
the evolution of the population is guided to a global optimum via solutions with
increasing fitness [20]. The FDC coefficient can be computed based on a sample
of m solutions f and the corresponding distances d to the optimal solution. The
FDC coefficient is defined as [15, p. 222f]

̺(f, d) =
cov(f, d)
σ(f)σ(d)

(7)

where

cov(f, d) =
1

m− 1

m∑
i=1

(fi − f)(di − d) (8)

σ(f) =

√√√√ 1
m− 1

m∑
i=1

(fi − f)2, σ(d) =

√√√√ 1
m− 1

m∑
i=1

(di − d)2. (9)

A high value of ̺ indicates that fitness and distance to the optimum are
related. In [17] a classification of problem difficulty based on FDC coefficients
is suggested. A problem with ̺ ≥ 0.15 (in [17] maximization problems were
investigated) is called straightforward and should be suitable for GA and more
general for EC.

The FDC coefficient can be estimated using randomly generated samples [16,
ch. 5]. It is more interesting to focus the analysis towards locally optimal solu-
tions since local search procedures (as important components of EC) are biased
towards sampling good solutions. Fitness distance scatter plots can support the
evaluation of the FDC coefficient by avoiding misinterpretations.

Based on FDC analysis a big valley structure was reported for some opti-
mization problems, e.g., the traveling salesman problem [4], the graph bisec-
tion problem [4], the permutation flowshop sequencing problem [23], and the
quadratic assignment problem [20]. The big valley structure means that local
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optima tend to be relatively close to each other and to the global optimum.
High FDC coefficients are an indicator for the presence of the big valley struc-
ture. Further evidence for a big valley structure can be obtained from results on
the correlation between the solution quality and the average distance between
one element and any other element of a given set of locally optimal solutions
[4]. The presence of a big valley structure should support the performance of
recombination in population-based search. Usually the initial population of so-
lutions is uniformly distributed over the complete search space. Recombination
should focus the search in a region with good solutions. In a big valley structure
recombination can potentially drive the search towards the optimal solution.

In the following we review some distances for the CFSP. We consider two
different notions of distance. Derived from the interpretation of the permutation
representation where either the adjacency relation among the elements of the
permutation, or the relative order of the elements, or the absolute position of the
elements may be of relevance we review the adjacency distance, the precedence
distance, and the absolute position distance. Related to the absolute position
distance is the deviation distance which is a measure for positional deviation
of two permutations. The distance between two points (solutions) can also be
defined as the minimal number of elementary move operators which have to be
applied to transform one permutation into the other permutation. Based on two
neighborhood structures known to be suitable for the CFSP [11] we review the
swap distance and the shift distance. Additionally we consider the edit distance
which is based on edit operations.

The unidirectional version of the adjacency distance (adjacency based dis-
tance in [26]) is defined depending on the number of times a pair of jobs i, j is
adjacent in both Π and Π ′:

d(Π, Π ′) = n− 1−
n−1∑
i=1

yi with yi =

{
1 for πi = π′j and πi+1 = π′j+1

0 otherwise
(10)

with the maximum adjacency distance dadj,max = n− 1.
The precedence distance is defined depending on the number of times npre

some job j is preceded by job i in both Π and Π ′ [23]:

dpre(Π, Π ′) =
n(n− 1)

2
− npre (11)

with the maximum precedence distance dpre,max = n(n− 1)/2.
The absolute position distance (exact match distance in [24]) is defined de-

pending on the number of exact positional matches of jobs [24]:

dabs(Π, Π ′) = n−
n∑

k=1

yi with yi =

{
1 if πi = π′i
0 otherwise

(12)

with the maximum absolute distance dabs,max = n.
The deviation distance (position-based metric in [23]) requires the definition

of the inverse permutation Σ of sequence Π , where the position of job πi is given
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by σπi = i. The deviation distance is the amount of positional deviation and can
be calculated as [23]

ddev(Π, Π ′) =
n∑

j=1

|σj − σ′j | (13)

with the maximum deviation distance [24]

ddev,max =

{
n2/2 if n is even
(n2 − 1)/2 if n is odd.

(14)

The swap distance is based on the swap (or interchange) move which ex-
changes a pair of jobs πi and πj with i 6= j. The calculation of the exact swap
distance between two permutations is nontrivial. In order to reduce compu-
tational complexity a path in the swap neighborhood may be calculated by
position-wise comparison of the two parent permutations Π and Π ′. If a job in
Π is not in the same position as in Π ′ it is swapped to the correct position and
the move is stored. The number of stored moves corresponds to the approximated
swap-distance dswap(Π, Π ′) with the maximum swap distance dswap,max = n−1.

The shift distance is based on the shift (or insertion) move which removes
the job πi and inserts it behind the job πj with i 6= j and i 6= j + 1. The
computation of the shortest shift distance (or permutation edit distance in [6])
is related to the longest common subsequence of the two permutations Π and
Π ′. Let LCS(Π, Π ′) be the length of the longest common subsequence of Π and
Π ′, the shift distance can be calculated as [6]

dshift(Π, Π ′) = n− LCS(Π, Π ′) (15)

with the maximum shift distance dshift,max = n− 1.
The edit distance between two permutations Π and Π ′ is the minimal number

of edit operations required to transform permutation Π into Π ′. The elementary
edit operations are substitution, insertion, and deletion. A substitution changes
an element into another one, a deletion removes an element, and an insertion
inserts an element [27]. Under the assumption that the cost of an insertion or a
deletion is weighted as 1 and the cost of a substitution is 2 then the edit distance
can be calculated by [31]

dedit(Π, Π ′) = 2(n− LCS(Π, Π ′)) (16)

with the maximum edit distance dedit,max = 2(n− 1).
Normalizing the distances shows that under the assumed costs edit distance

and shift distance are equal.

3.2 Computational Experiments

For the fitness landscape analysis flow-shop scheduling problem instances were
taken from the OR-Library1 and treated as CFSP instances, namely the prob-
lem instances provided by Taillard (TA) [29], Heller (HEL) [14], Carlier (CAR)
1 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/flowshopinfo.html
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[5], and Reeves (REC) [22]. The latter were taken into account since they con-
tain small instances which are solvable by exhaustive enumeration. Additionally
two 10x5 instances were created using Taillard’s instance generator (with seeds
873654221 and 379008056).

The 3-index formulation of Picard and Queyranne [21] was used to compute
optimal solutions for the instances with up to 50 jobs (see Table 1). For the
larger instances the FDC analysis was based on the best solutions presented in
[8] (TA) and the best values found during the experiments (HEL, CAR, REC)
respectively. The data for the FDC analysis was obtained by performing multiple
runs of iterative improvement algorithms with the swap and the shift neighbor-
hood as described in [15, p. 222f]. The number of distinct local optima found
is given in Table 1. Since the samples apparently do not consist of independent
random samples a standard hypothesis test is not applicable. A randomization
test [10] was used to determine the significance of the found FDC coefficients
(as in [23]).

Table 1. Best solutions, number of local optima, normalized correlation length, and
first order correlation for the investigated instances. In case of a provably optimal
solution the entry is marked with an asterisk.

instance n x m best solution local optima l′ r(1)

swap shift swap shift swap shift

CAR7 7 x 7 36,534* 5 4 0.41 0.46 0.67 0.70
CAR6 8 x 9 52,946* 25 4 0.35 0.42 0.67 0.71
CAR8 8 x 8 52,703* 25 4 0.33 0.38 0.65 0.69
CAR5 10 x 6 58,445* 155 22 0.40 0.46 0.76 0.78
873654221 10 x 5 5,307* 163 11 0.34 0.43 0.72 0.77
379008056 10 x 5 5,671* 339 11 0.32 0.41 0.71 0.76
CAR1 11 x 5 52,353* 599 13 0.36 0.40 0.76 0.78

HEL2a 20 x 10 2,069* 2,493 2,359 0.39 0.37 0.87 0.87
REC01 20 x 5 17,187* 2,492 1,487 0.30 0.42 0.84 0.88
REC03 20 x 5 14,632* 2,467 961 0.31 0.43 0.84 0.86
REC07 20 x 10 24,598* 2,483 1,329 0.33 0.41 0.85 0.88
TA001 20 x 5 15,674* 2,443 1,271 0.34 0.43 0.86 0.86
TA011 20 x 10 25,205* 2,496 1,921 0.29 0.39 0.84 0.87
REC031 50 x 10 112,698* 2,000 1,814 0.29 0.33 0.93 0.94
TA031 50 x 5 75,668* 2,000 2,000 0.32 0.37 0.94 0.95
TA061 100 x 5 303,273 2,000 2,000 0.32 0.34 0.97 0.97
TA091 200 x 10 1,488,029 2,000 2,000 0.21 0.26 0.98 0.98
a For the problem instance HEL2 two global optima were found.

3.3 Results of the Landscape Analysis

To determine the ruggedness of the fitness landscape the distribution of the
position types for the seven smallest problem instances was determined by enu-
merating all possible solutions. The results are presented in Table 2. The values
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present the percentage of the total number of search space positions and the
numbers in brackets stand for the absolute count. The first line for each instance
represents the values w.r.t. the swap neighborhood and the second one for the
shift neighborhood. One can see that the number of (strict) local optima (w.r.t.
both swap and shift neighborhood) is very small and that for no problem in-
stance a search space position of type IPLAT was found. That should make
both fitness landscapes favorable for local search procedures. One can expect a
relatively large number of iterations before a local optimum is detected. The ab-
sence of interior plateaus prevents local search getting trapped in regions where
the search for exits may impede the search process.

Table 2. Position type distribution for the smaller instances.

instance SLMIN LMIN IPLAT SLOPE LEDGE LMAX SLMAX

CAR7 0.10 (5) 0.00 (-) 0.00 (-) 99.48 0.20 0.00 (-) 0.22 (11)
0.08 (4) 0.00 (-) 0.00 (-) 99.03 0.83 0.00 (-) 0.06 (3)

CAR6 0.06 (25) 0.00 (-) 0.00 (-) 99.48 0.40 0.00 (-) 0.06 (26)
0.01 (4) 0.00 (-) 0.00 (-) 99.22 0.73 0.00 (1) 0.04 (16)

CAR8 0.06 (25) 0.00 (-) 0.00 (-) 99.24 0.59 0.00 (1) 0.10 (40)
0.01 (4) 0.00 (-) 0.00 (-) 98.89 1.06 0.00 (-) 0.04 (17)

CAR5 0.00 (155) 0.00 (-) 0.00 (-) 99.25 0.74 0.00 (-) 0.00 (92)
0.00 (22) 0.00 (-) 0.00 (-) 98.72 1.27 0.00 (2) 0.00 (154)

873654221 0.00 (157) 0.00 (6) 0.00 (-) 90.69 9.30 0.00 (22) 0.00 (126)
0.00 (11) 0.00 (-) 0.00 (-) 87.11 12.89 0.00 (5) 0.00 (59)

379008056 0.01 (311) 0.00 (28) 0.00 (-) 91.73 8.26 0.00 (12) 0.00 (111)
0.00 (9) 0.00 (2) 0.00 (-) 86.66 13.34 0.00 (1) 0.00 (87)

CAR1 0.00 (595) 0.00 (4) 0.00 (-) 98.42 1.57 0.00 (4) 0.00 (576)
0.00 (13) 0.00 (-) 0.00 (-) 98.12 1.88 0.00 (-) 0.00 (63)

The evaluation of the first order correlation (Table 1) suggests a smooth
landscape and amplifies the idea that the landscape structure of the CFSP is
favorable for local search procedures. The comparison of the normalized correla-
tion lengths indicates that the shift neighborhood seems to be favorable for local
search. The reason for this may be the larger neighborhood size (compared to
the swap operator) leading to a smaller diameter and, as shown with the position
type distribution (Table 1), fewer number of local optima.

The results of the FDC are presented in Table 3. The first row for each in-
stance shows the FDC coefficients based on local optima in the swap neighbor-
hood. The second row stands for the landscape derived from the shift operator.
The first value of each entry corresponds to the FDC coefficient calculated for
the distance to the best solution, the second to the average distance to all other
local optima. In case a coefficient is not significant at the 0.01 level (according
to a randomization test) the entry is marked with an asterisk.

For the examined problem instances the FDC coefficients indicate that, ac-
cording to [17], the fitness landscapes induced by the swap and the shift operator
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Table 3. Fitness distance correlation coefficients for the investigated instances. The
first value corresponds to the distance to the best solution, the second to the average
distance to all other global optima. The first line for each instance represents the
swap neighborhood, the second one the shift neighborhood. In case a coefficient is not
significant at the 0.01 level the entry is marked with an asterisk.

instance FDC coefficient for distance metrics
adjacency precedence absolute deviation edit swap

CAR7 0.517*/0.187* 0.824*/0.512* 0.817*/0.763* 0.907*/0.640* 0.735*/0.495* 0.864*/0.564*
0.989/-0.542* 0.897*/0.938 0.856*/0.757 0.856*/0.953 0.986/0.308* 0.779*/0.757

CAR6 0.509/0.302* 0.714/0.812 0.509/0.494 0.606/0.704 0.805/0.846 0.316*/0.360*
0.563*/-0.365* 0.951/0.220* 0.906/0.358* 0.904/0.248* 0.956/0.038* 0.920/-0.082*

CAR8 0.281*/0.372* 0.615/0.728 0.643/0.712 0.669/0.729 0.629/0.818 0.541/0.636
0.950*/-0.108* 0.992/0.293* 0.948/0.956* 0.997/0.753* 0.999/-0.010* 0.914/0.867

CAR5 0.523/0.633 0.721/0.674 0.505/0.517 0.669/0.638 0.777/0.816 0.440/0.430
0.688/0.603 0.861/0.508 0.485/-0.026* 0.797/0.426* 0.868/0.639 0.487/-0.116*

873654221 0.241/0.017* 0.675/0.796 0.385/0.672 0.625/0.790 0.603/0.765 0.423/0.697
0.484*/0.649* 0.364*/0.564* 0.202*/0.293* 0.304*/0.534* 0.251*/0.633* 0.019*/0.327*

379008057 0.293/0.199 0.565/0.385 0.417/0.556 0.516/0.368 0.604/0.588 0.294/0.459
0.535*/0.050* 0.901/0.376* 0.889/0.304* 0.877/0.087* 0.822/0.091* 0.860/0.627

CAR1 0.382/0.195 0.608/0.368 0.545/0.320 0.635/0.428 0.582/0.550 0.499/0.226
0.612/0.578* 0.688/0.450* 0.498/0.468* 0.680/0.421* 0.492*/0.502* 0.501*/0.405*

HEL2 0.383/0.613 0.716/0.760 0.577/0.844 0.667/0.758 0.565/0.766 0.551/0.836
0.262/0.313 0.401/0.568 0.373/0.724 0.396/0.631 0.488/0.687 0.332/0.705

REC01 0.316/0.574 0.643/0.713 0.352/0.382 0.606/0.688 0.592/0.742 0.298/0.424
0.283/0.476 0.470/0.568 0.288/0.496 0.469/0.545 0.443/0.627 0.273/0.502

REC03 0.361/0.624 0.651/0.740 0.415/0.598 0.632/0.737 0.560/0.844 0.365/0.614
0.259/0.380 0.616/0.666 0.510/0.589 0.629/0.660 0.506/0.746 0.479/0.592

REC07 0.504/0.663 0.681/0.680 0.385/0.672 0.638/0.672 0.679/0.836 0.387/0.685
0.392/0.527 0.567/0.559 0.452/0.585 0.562/0.566 0.620/0.722 0.412/0.582

TA001 0.532/0.767 0.665/0.750 0.525/0.729 0.650/0.802 0.605/0.825 0.488/0.748
0.459/0.660 0.453/0.602 0.569/0.795 0.498/0.649 0.519/0.781 0.533/0.795

TA011 0.327/0.574 0.332/0.498 0.243/0.524 0.321/0.479 0.329/0.671 0.223/0.528
0.404/0.530 0.455/0.590 0.315/0.424 0.426/0.562 0.456/0.701 0.275/0.419

REC031 0.427/0.740 0.490/0.642 0.171/0.209 0.482/0.609 0.382/0.757 0.166/0.265
0.335/0.528 0.451/0.560 0.222/0.399 0.425/0.537 0.434/0.540 0.217/0.429

TA031 0.701/0.869 0.677/0.794 0.407/0.660 0.653/0.787 0.637/0.863 0.403/0.701
0.596/0.751 0.505/0.638 0.326/0.486 0.470/0.626 0.540/0.703 0.326/0.521

TA061 0.460/0.691 0.488/0.541 0.161/0.275 0.465/0.533 0.341/0.692 0.155/0.341
0.485/0.745 0.529/0.554 0.159/0.279 0.507/0.542 0.382/0.706 0.166/0.337

TA091 0.495/0.681 0.543/0.527 0.222/0.274 0.521/0.526 0.420/0.713 0.231/0.310
0.510/0.644 0.479/0.510 0.244/0.194 0.457/0.508 0.467/0.576 0.235/0.225

are suitable for EC algorithms and a big valley structure may be present. How-
ever, the differences between the coefficient values for different distance mea-
sures are noticeable. The question which metric is a good distance measure for
the CFSP (or what properties have good solutions in common) is not that clear
from the obtained results. It seems that the precedence distance may be best
suited for the CFSP because it produces high correlations for all investigated in-
stances. Additionally the average distances between local optima are quite small.
In Figure 1 the scatter plot for the 20 jobs instance TA001 is exemplarily shown.
The other examined instances show similar scatter plots. As distance measure
the precedence distance was used for the reasons described. The distance to the
best solution and the average distance to all other local optima respectively is
plotted against the percentage relative deviation to the best solution. The eval-
uation of the scatter plots confirms the assumption of the existence of the big
valley structure for the examined problem instances. The generated local op-
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12 Jens Czogalla

tima seem to be clustered around the global optimum (or best solution) in a
small region of the search space. However, given the sampling methods used the
samples might be biased and thus the results imprecise. The presence of the big
valley structure should make the CFSP solvable for EC. Maybe recombination
methods focusing on the relative order of the jobs are favorable. Local search (if
not used as greedy search) has to be adapted in a way that other local optima
in the cluster are reachable without straying too far away from it. This can be
done by means of perturbing solutions to generate new starting points for the
search or the use of different neighborhood structures.

Fig. 1. Analysis of 2,443 distinct local minima w.r.t. the swap neighborhood for the
20 jobs instance TA001. The percentage relative deviation to the optimal objective
function value is plotted against (left) precedence distance to the optimum solution
and (right) the average precedence distance to all other local optima.

4 Achievements

The results from the fitness landscape analysis indicate that EC should be able
to detect good solutions for the CFSP. Furthermore the fitness landscape of the
CFSP should be workable for local search procedures. Hybridization with those
domain specific improvement methods is advisable. Even if there is no superior
distance measure (or measure for similarity) for all examined problem instances
the relative order of the jobs might be regarded as the most important property
of good solutions. This feature might be exploited by recombination operators
specifically designed for the CFSP.

The obtained results help to explain the findings in [8] where we investigated
the critical success factors of discrete particle swarm optimization for solving the
CFSP. The combination of different crossover operators turned out to be superior
compared to the application of a single one. Since the results were obtained
for a whole set of problem instances the exploitation of different properties of
good solutions may be responsible for the improvement. However, especially for
the larger instances, results reported in the literature could not be obtained
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without local search. The hybridization with local search procedures enabled
the algorithm to find high quality solutions and even improve some of the best
results found in the literature. Closer examination of the algorithm revealed
that high quality solutions were mainly attributed to local search. In [11] tabu
search and simulated annealing were used to solve the CFSP. Despite limited
computational resources high quality solutions could be obtained emphasizing
the adequacy of the CFSP fitness landscape for local search procedures.

5 Feedback

With the submission of this work to EvoPhD we hope to get feedback if the
proposed thesis outline is suited for a good thesis on the topic of EC and COP.
Furthermore we are looking forward for comments on what EC issues should
additionally be included and what problem classes would make a nice proceeding
of the work done so far. Generally every comment is welcome, also critical ones,
even if that means “back to the drawing board”.
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27. K. Sörensen. Distance measures based on the edit distance for permutation-type
representations. Journal of Heuristics, 13:35–47, 2007.
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Abstract. This paper describes research into program size bias present
within Genetic Programming operators notably crossover, mutation and
population initialisation. An understanding of this bias in conjunction with
program space theory allows us to make informed choices during experi-
mental design. It also allows us to explain certain effects seen during GP
runs such as program growth, the sampling of smaller programs, and the
effects of applying length limits. A promising aspect of the research has
been in the creation of new operators that can limit resampling effects and
also to provide user defined bias which can be used to determine and ex-
ploit program search space knowledge. This research has also led to the
creation of a new bloat theory: Crossover-Bias.

1 Introduction of the Research Area

Program size is important to the efficiency of Genetic Programming (GP). Too
large a program will produce an inefficient solution and one that is costly to quan-
tify in terms of fitness, whilst too small a program will not produce a solution
at all. The aim of this project is to analyse in-built operator bias regarding the
sampling of program size during a GP run and to suggest methods of improving
the GP process in light of this knowledge.

With the advent of a greater understanding of program search spaces, primar-
ily, we now know that the functionality of programs reaches a limit as program
length increases [1–3] acquiring knowledge of how GP operators sample program
length classes has become more and more urgent. Ideally, we would like to sample
the length class where the smallest optimal programs can be found. Unfortunately,
in general: a) one does not know where solutions (let alone most compact ones)
are, and, b) genetic operators present specific (length) biases which are often un-
known or only partially known and, therefore, are difficult to direct and control.
A characterisation of operator bias, therefore, is needed in understanding how GP
will sample the search space in the first instance before technically sound problem
specific modifications can be made.

Prior to this project, research has been conducted in a number of related areas.
For example, first, in the discovery of sub-tree swapping crossover length distribu-
tions for variable length strings in linear GP [4]. Second, the authors also provided
another significant result showing that program length will remain constant with
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2 Genetic Programming Operator Bias

repeated application of sub-tree swapping crossover on a flat fitness landscape in
the absence of genetic drift [5]. And finally, but not limited to, expected program
sizes for traditional GP initialisation methods have been determined in [6]. Re-
search has, however, been limited with little attempt to consolidate findings and
conclusions.

2 Research and Study

2.1 Goals

The project aims to analyse the effect of GP operators on program size, initially
in isolation and then in conjunction with selection and other operators, in order
to answer the following questions:

Do existing GP operators, notably population initialisation, crossover and mu-
tation have an inbuilt bias to sample certain program sizes? If this is so how can
we model this bias mathematically so that we can explain the consequences of
their repeated application and to understand the combined effect of their use? A
mathematical model will also allow us to determine which parameters for these
operators are important with regards to length bias.

We can then ask how does size bias affect the exploration of the GP search
space? As size bias will cause a GP run to sample certain areas of the search
space more extensively than others, we need to determine if this is beneficial or
detrimental. We can then alter existing, or devise new operators to create, direct,
increase or reduce this bias.

We can use the knowledge gained from this work to understand typical GP
effects such as code growth (bloat), shrinkage, convergence, and program resam-
pling.

Finally and most importantly, this research can be used in conjunction with
program space theory [1–3] to improve GP search. This can take many forms from
bloat controls, direct biasing of program search space exploration to the simple
selection of existing operators and their parameters.

2.2 Current Status

In [7] strong theoretical and experimental evidence was provided that using a
flat fitness landscape standard sub-tree swapping crossover with uniform selection
of crossover points pushes a population of a-ary1 GP trees towards a limiting
distribution of tree sizes. i.e. with repeated application the length distribution of
trees will converge to a fixed point. The distribution was shown to be a Lagrange
distribution of the second kind. This is an important result as it shows how, when
presented with individuals from the mating pool during a normal GP run with
selection, crossover will bias it’s exploration of the search space.

The model was generalised in [9] to enable mixed arity tree internal node dis-
tributions to be predicted. Again strong experimental evidence was provided to
support the model. In both the a-ary and mixed arity tree models there was shown
1 GP systems with functions of a certain arity only e.g. 2-ary trees for boolean type

problems such as 4-bit Even Parity [8].
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Genetic Programming Operator Bias 3

to be a strong bias for this form of sub-tree swapping crossover to sample exponen-
tially smaller programs. This bias is most acute when a population is initialised
with a small mean program size. The work was also extended in this paper to
sub-tree swapping crossover with 90% internal node selection, 10% internal node
selection policy, commonly used by GP practitioners. This again showed a strong
bias towards the sampling of smaller programs.

As this form of crossover likes to sample smaller programs we chose to initialise
a number of standard GP problems with a Lagrange distribution. This was eas-
ily achieved by turning off selection for a number initial generations. For many
problems it was found that ‘Lagrange-like’ initialisation induced bloat from the
earliest generations i.e. as soon as we turned selection back on. This was felt at
first to be surprising as bloat is normally associated with later generations of a
run when effectively the population starts stagnating. However, when we analysed
the problems that exhibited these properties (small sizes correlate with relatively
low fitness values) and those that don’t (small sizes can achieve initially rela-
tively high fitness values) it led us to a new bloat theory which we have called
‘Crossover-Bias’ [9].

More recently we have extended our models once more to produce exact length
models that can be used by practitioners (previously these had been expressed in
terms of internal nodes). This work is described in section 3.2.

Crossover-bias has been used to explain the effects of length limits on GP
experimentation i.e. an accelerated push towards a length limit and the increased
sampling of the very smallest classes as ever tighter length limits are imposed. A
new bloat control technique called ‘Sampling Parsimony’ has also been suggested
in light of this research. This has been used to show we can control program growth
by applying penalties to resampling after or before certain boundaries are reached.

We have looked at how to directly manipulate the sampling, by length, of
programs by GP during an experimental run. To do this we have created a tech-
nique called ‘Operator Equalisation’, that allows existing GP implementations,
with only slight modification, to sample pre-determined length distributions. Re-
sults show that we can automatically identify potentially optimal solution length
classes quickly using small samples and that, for particular classes of problems,
simple length biases can significantly improve the best fitness found during a GP
run.

Both Sampling Parsimony and Operator Equalisation papers have been ac-
cepted for presentation at the EuroGP 2008 conference.

2.3 Future Planning

Current research has concentrated on arguably the defining genetic operator of
standard GP [10], sub-tree swapping crossover. Although impressive results have
been achieved, a number of questions remain that can be tackled in the time avail-
able. Firstly, how can we extend our models to other forms of crossover? Secondly,
how can this work be combined and extended to program initialisation and muta-
tion? As the first part of our method (section 3.1) is to look at genetic operators
apart from selection, this should allow us to understand how GP handles neu-
trality in that when areas of neutrality are reached search will become strongly
influenced by the biases we have identified. Finally, this work can provide us with
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4 Genetic Programming Operator Bias

a number of answers regarding the lack of convergence of GP populations to iden-
tical individuals as seen in Genetic Algorithms. As fitness converges crossover will
continue to distribute individuals according to a limiting length distribution. How
GP crossover searches within each length class has also yet to be analysed.

It is intended that over the next six months these questions will be tackled
with the intention of starting production of the thesis after that point. Creation of
journal articles and conference papers summarising and extending current research
is also proposed during that time.

After submitting the thesis I would ideally like to continue my research into
Genetic Programming and extend this to other forms of program space search. I
have also begun the first module of a higher education teaching qualification so
that I have improved chances of gaining a lectureship at a university.

2.4 Study

I am in the third year of my PhD and intend to complete within this study year
or very soon after.

There is a study programme outlined for research students defined by the Uni-
versity of Essex. This programme is broken into Initial, Middle and Final periods,
each has a number of tasks and written progress reports associated with it. Typ-
ical tasks include the production of an outline proposal, a full proposal, critical
literature survey etc.

Progress is monitored by a supervisory board that sits every six months. This
consists of a supervisory board chair, the PhD supervisor, and one other member
of academic staff. Board members are chosen on the basis of their competence to
comment on the empirical or thematic substance of a student’s work. Research
progress reports need to be submitted to the board and a presentation of current
work and overall progress is given at every meeting.

3 Results

3.1 Methodology

The methodology employed is as follows:
First, existing research is examined. There are a number of theoretical and

empirical papers that have looked at aspects of this problem but within a restricted
framework. For example, initial crossover bias work looked at Linear-GP only; I
have, therefore, been able to extend this work to examine tree structures.

The next aim is to extend the theory preferably using a mathematical model.
This can then be used for simulation using a tool such as MatLab, or as the basis
of a highly simplified computer program. For example, a test suite has been cre-
ated that repeatedly applies crossover and/or mutation to a population made up
of generic GP nodes that are problem independent. This also allows alteration of
population initialisation and crossover/mutation parameters. In addition, a num-
ber of statistical tools have been created that are suited to the analysis of program
length.

Once strong evidence of the model has been obtained in isolation, a number of
standard GP problems are set up using the Java Evolutionary toolkit ECJ [11].
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Fig. 1. Comparison between empirical and theoretical program size distributions for trees
made up of a mix of 2, 2, and 3 arity functions (ā=7/3) initialised with FULL method
(depth = 3, initial mean size µ0 = 21.48, mean size after 500 generations µ500 = 23.57)

The effect of parameter variation, in conjunction with the application of selection,
is examined in terms of eventual length distributions and also the effect on fitness.
Again, a statistics module has been created to analyse length distributions.

3.2 Experiments

In [7] we provided strong theoretical and experimental evidence that standard
sub-tree swapping crossover with uniform selection of crossover points pushes a
population of a-ary GP trees, in the absence of selection, towards a limiting dis-
tribution of tree sizes of the form:

Pr{n} = (1− apa)
(

an + 1
n

)
(1− pa)(a−1)n+1pn

a (1)

This is known as a Lagrange distribution of the second kind. Pr{n} is the prob-
ability of selecting a tree with n internal nodes and a is the arity of functions
that can be used in the creation of an individual. The parameter pa was shown to
be related to µ0, the mean program size at generation 0, and a according to the
formula:

pa =
2µ0 + (a− 1)−√

((1 − a)− 2µ0)2 + 4(1− µ2
0)

2a(1 + µ0)
(2)

Equation (1) was generalised using the Gamma function: Γ (n + 1) = n! in [9]
to enable mixed arity tree internal node distributions to be predicted:

Prg{n} = (1− āpā)
Γ (ān + 2)

Γ ((ā− 1)n + 2)Γ (n + 1)
(1 − pā)(ā−1)n+1pn

ā (3)
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Fig. 2. Comparison between empirical and theoretical program size distributions for trees
made up of a mix of 1, 2, 3 and 4 arity functions (ā=10/4) initialised with FULL method
(depth = 3, initial mean size µ0 = 25.38, mean size after 500 generations µ500 = 23.76)

ā being an averaged arity of the primitive set. This can be calculated for mixed
function arities from experimental initialisation parameters as follows:

ā = E(arity(F )) =
∑

f

arity(f)P (F = f) (4)

where E is the expectation operator, f is a non-terminal to be used in the GP
experiment, arity(f) is a function returning the arity of the non-terminal f ,and
P (F = f) is the probability that a particular non-terminal f will be selected for a
non-terminal node by the tree initialisation procedure. For traditional FULL and
GROW initialisation methods non-terminals are chosen with equal probability.

For our first step towards extending Equation (3) to allow us to predict program
length distributions with mixed arities, we look at what we can say for certain
regarding the relationship between number of internal nodes and program length.
First, we know for a-ary trees where the arities of all nodes in the tree are the
same, the length, ℓ, of a program can be expressed exactly in terms of the number
of its internal nodes, n, using the following equation:

ℓ = a× n + 1, (5)

where a the (fixed) arity of the internal nodes. Therefore, rearranging Equation (5)
to obtain internal nodes in terms of length, i.e.,

n =
ℓ− 1

a
, (6)

and substituting this into Equation (1), we obtain that, for a-ary trees,

Prl{ℓ} =

{
Pr{ ℓ−1

a } if ℓ is a valid length (i.e., ℓ−1
a is a non-negative integer),

0 otherwise,
(7)
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Genetic Programming Operator Bias 7

where Prl{ℓ} is the limiting distribution of program lengths. This distribution ap-
plies, for example, for boolean function induction problems where often all func-
tions are binary and symbolic regression problems where often only the standard
four arithmetic operations are used.

Our next step is to extend the generalised formula for mixed-arity trees (Equa-
tion (3)) so as to predict length distributions rather than internal node distribu-
tions. We know that for a program length of 1, a single terminal, there will always
be 0 internal nodes. Therefore, prediction of single node programs is a simple one-
to-one mapping with the generalised formula for 0 internal nodes. However, other
lengths can be obtained by different combination of internal nodes of different ari-
ties. For example, one can obtain programs of length 3 by using one internal node
of arity 2 or two internal nodes of arity 1.

As a first approximation, we will assume that we can still estimate the expected
number of internal nodes in a tree of length ℓ by applying Equation (6), simply
using ā instead of a. We can then substitute the result into Equation (3) to obtain
the distribution of lengths we are looking for. Naturally, between the variable ℓ
and the variable n there is a difference in scale (the factor ā). So, we will need
to normalise the values produced by Equation (3) to ensure the new distribution
sums to 1.

Putting all of this together, we obtain an approximate model of the limit-
ing distribution of program lengths in the case of primitive sets of mixed arities.
Namely:

Prv{ℓ} =

{
Prg{0} if ℓ = 1,
Prg{ ℓ−1

ā }
ā if ℓ is a valid length greater than 1.

(8)

Note, we do not require ℓ−1
ā to be an integer.

By choosing to apply GP to a particular problem we have made an assumption
that both fitness based selection and crossover are likely to provide an efficient
search method to provide a solution. Normally a GP initialisation method is used
GROW, FULL, RAMPED etc that takes no account of the eventual distributions
‘desired’ by either crossover or fitness (or any other GP operator such as mutation).
Normally, eventual fitness values are not known in advance of a GP experiment,
however, we now have evidence to show that crossover will, with repeated ap-
plication, distribute the population according to a predictable distribution. Our
next step is to investigate the possible benefits or disadvantages of initialising a
population by length to take account of crossover.

We could of course write an algorithm to initialise the population according to
the eventual predicted distribution desired by crossover. The most straightforward
programmatic method, however, is to simply run the first ‘X’ number of genera-
tions of a GP experiment without fitness, thereby allowing crossover to distribute
program lengths without having to endure the cost of fitness calculations.

The results of this experiment and verification of the above equations are de-
scribed in the next section.

3.3 Results

In order to verify empirically the distributions proposed in 3.2 we performed a
number of runs of a GP system in Java. A relatively large population of 100,000
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8 Genetic Programming Operator Bias
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Fig. 3. Comparison between empirical and theoretical program length distributions for
2-ary trees initialised with FULL method (depth=3, initial mean size µ0 = 15.0, mean
size after 500 generations µ500 = 14.49). Invalid even lengths are ignored.

individuals was used in order to reduce drift of average program size and to ensure
that enough programs of each length class were available. The FULL [8] initialisa-
tion method was used with each function having the same probability of selection.
Each run consisted of 500 generations. A flat fitness landscape was used i.e. all
fitness calculations returning a constant value.

Histograms were collected from the final generations (in order to ensure the
effects of our chosen initialisation method have been washed-out2). For equation 3
each bin contained the number of internal nodes contained within a program.
Figures 1 and 2 show our theoretical and observed results for arity mixes of 2, 2
& 3 and 1, 2, 3 & 4 respectively. Note, that in order to highlight the fit for larger
and less common programs we used a log scale for frequency.

In order to verify our length distribution (equation 8) figure 3 shows an ob-
served plotted length distribution for 2-ary trees, with invalid (even) lengths re-
moved, compared to that predicted by Prl. The observed values are again averages
over twenty independent runs with populations of 100,000 individuals run for 500
generations. As we can see there is a very close fit between the two curves. Figure 4
shows the results of using arities of 1, 2, 3 & 4.

For our ‘Lagrange-like’ initialisation idea we took two out-of-the-box problems
from the ECJ [11] evolutionary toolkit, the Artificial Ant (arities 2, 2 & 3) and 4
Bit Even Parity (arity 2 only), making adjustments to remove mutation, ensure
uniform selection of crossover points, and to prevent a depth limit being applied.
A population size of 1024 individuals was used and the results averaged over a
hundred runs. All experiments were initialised using the FULL method with a

2 It would of course be interesting to see how many generations are required to negate
length effects of chosen initialisation methods. This has been left as a subject for future
research.
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Fig. 4. Comparison between empirical and theoretical program size distributions for trees
made up of 1, 2, 3 and 4 arity functions initialised with the FULL method (depth=3, µ0

= 25.38, µ500 = 23.76). All lengths are valid.

depth of 3. Each experiment looked at the effect of running with zero, twenty or
fifty initial generations where a constant fitness value was applied before allowing
the experiment to continue as normal. Naturally, the flat-fitness phase was much
faster than normal, since no fitness evaluation was required. During this phase
crossover was free to distribute the population towards its limit size distribution.

Figures 5 and 6 show graphs of program growth for the Artificial Ant and
4-Bit Even Parity problems described. There is a noticeable increase in program
growth for the populations with ‘Lagrange-like’ initialisation (via crossover-only
prior generations).

At first one might find this result very surprising. How is it that initialisation
has such a big effect on bloat, which is typically associated with late generations of
a run, when effectively the population starts stagnating? An explanation for this
lies in the combination of the crossover sampling distribution and fitness.

In every generation we produce a mating pool of relatively fit programs which
will be used for reproduction. The standard crossover operator (with uniform se-
lection of crossover points) will create a certain distribution of program sizes ir-
respective of the fitness of programs selected in that mating pool. For example, if
size 45 programs are for some reason very fit, once in the mating pool, crossover
takes no account of this fitness and produces a distribution of differing programs.
From the theory provided earlier in the paper we know that this distribution is
biased, in frequency, towards smaller programs, but with a tail of larger programs.

As the smaller programs will tend to be less fit (as a proportion of the pop-
ulation), these will not be selected for mating in the next generation. The larger
programs will be selected as parents, thereby providing a higher probability of
larger trees being created as children.
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10 Genetic Programming Operator Bias

This explanation fits completely within the mathematical explanation for bloat
provided in [12], where the following size evolution equation was derived3

E[µ(t + 1)− µ(t)] =
∑

l

N(Gl)(p(Gl, t)− Φ(Gl, t)) (9)

where E is the expectation operator, µ(t) is mean program size at time/generation
t, Gl represents all programs of a particular shape, N(Gl) represents the size of
programs of shape Gl, p(Gl, t) represents the selection probability for programs
of shape Gl and Φ(Gl, t) represents their frequency in the population. As length
classes are a super set of shape classes we can rewrite equation 9 as:

E[µ(t + 1)− µ(t)] =
∑

l

l × (p(l, t)− Φ(l, t)) (10)

where p(l, t) is the selection probability for programs of length l and φ(l, t) is their
current proportion.

If, as is the case for the Ant and Parity problems, the selection probability for
short programs is consistently lower than their frequency, then, everything else
being equal, one must expect E[µ(t + 1)− µ(t)] > 0, and hence bloat will occur.

In essence where a reasonable minimum size threshold exists for relatively
fit programs, the repeated application of fitness based selection and standard
crossover (with uniform selection of crossover points) to a population will cause
bloat to occur. Our experimentation has shown that by allowing crossover to dis-
tribute a population before applying fitness we make this effect more acute. That
is we are producing populations with proportionately shorter programs than those
created using more traditional GP initialisation methods.

4 Achievements

We have presented within this paper a generalisation of the limiting distribu-
tion of program sizes for tree-based genetic programming when sub-tree swapping
crossover is applied to a flat-fitness landscape. The formula provides evidence that
the reproduction process has a strong bias to sample exponentially shorter pro-
grams. This bias is also most acute when a population has a small mean program
size, refer to [9] for details 4.

A number of practical concerns have been presented in light of this bias. The
first is an inability to sample large parts of the problem space i.e. those associated
with larger programs. Additional problems with crossover are also encountered
when fitness is associated with certain minimum program sizes leading to relatively
poor performance in the finding of fit solutions and a tendency for the population
to bloat.
3 A major finding of this paper is that for symmetric subtree-swapping crossover oper-

ators e.g. standard crossover, ’The mean program size evolves as if selection only was
acting on the population’. Derivation of this equation is explained in section 5.4 of
[12].

4 This paper also details the detrimental effect of fitness during a GP run when this bias
is in full effect.
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Fig. 5. Comparison of mean number of nodes per individual for populations with zero,
twenty and fifty prior generations of crossover without fitness for the Artificial Ant prob-
lem

We have also shown that bloat can occur even from generation 0. It nor-
mally happens effectively only in much later generations because it takes time
for crossover to skew the size distribution towards short programs, i.e. towards its
limiting Lagrange distribution of the second kind.

It is therefore evident that future research should look into ways of modifying
the bias of crossover if bloat is to be prevented. To do this we have created a new
technique called Operator Equalisation (results to be published). This is a pro-
grammatically simple method that can be easily applied to current experimental
environments that allows us to finely bias GP search to sample specific program
lengths. In particular, the method can force GP to sample the search space using
static (and arbitrary) length distributions. This completely and naturally sup-
presses bloat.

As we have shown the formulae presented show an exponentially increasing bias
for crossover to sample smaller programs. As there are exponentially fewer unique
smaller programs than larger programs, the sampling of new programs becomes
less likely during a GP run if only crossover is applied. This bias becomes more
acute with the application of a length limit (results to be published). The effect
will become more prevalent as fitness values converge (i.e. as the fitness landscape
flattens) during later stages of a GP run or when areas of neutrality are reached.

In order to explore what happens if one directly addresses this sampling-related
cause for bloat, we have introduced a novel technique called Sampling Parsimony.
By setting a penalty and a resampling maximum/minimum boundary this can be
used to accelerate growth as well as to reduce its effect. We have not, however,
directly verified if Selection Parsimony is competitive with other antibloat tech-
niques and if so in which circumstances. We will, however, address this question
in future work.
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twenty and fifty prior generations of crossover without fitness for the 4 Bit Even Parity
problem

5 Feedback

I would be interested in any related work that may have or is currently being
undertaken by researchers. I would also be interested in how this can be applied
to other areas, for example my work on neutrality was a by-product of this research.

Of particular interest is the modeling of selection in conjunction with genetic
operators. Current research notably in the use of schema theory has treated se-
lection as a black box that cannot be opened. I have continued this trend in my
own work. I would be interested, therefore, in any ideas regarding how to combine
mathematical models with selection.

Finally, any advice with regard to experimental method would be much appre-
ciated.
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Abstract. In recent years, there has been an emergence of squad-based
shooter computer games. For a team to be tactically proficient, intelli-
gent non-playable characters (NPCs) must be created that are able to
assess their situation, choose effective courses of action and coordinate
their behaviour so that they work together effectively. This is a very
difficult task and game developers are still striving to create teams of
NPCs that are able to display effective team behaviours. Our research
examines genetic programming (GP) as a technique to automatically de-
velop effective team behaviours for shooter games. Previous experiments
have given rise to GP evolved teams capable of consistently defeating a
single powerful enemy agent. The behaviours of these teams have been
analysed using a technique we developed for analysing team phenotypes.
In future work, we wish to incorporate explicit communication into the
evolution and improve our phenotypic analysis method.

1 Introduction

1.1 Problem and Open Questions

Over the past five years, there has been an emergence of more squad-based
shooter computer games. The non-playable characters1 (NPCs) in these games
are required to be tactically proficient by working together intelligently to over-
come their enemy. Rather than attempting to develop complex behavioural sys-
tems that allow the NPCs to display intelligent team behaviour, game developers
are still using deterministic techniques to implement the artificial intelligence
(AI) of the individual NPCs and have opted to use simple techniques to make
it appear as if the NPCs are cooperating in an intelligent manner. For example,
some game developers prevent two NPCs from shooting at the player simulta-
neously, causing them to appear to be taking turns attacking the player. This is
combined with audio cues from the NPCs such as shouting “cover me” when an
NPC goes to reload its weapon to create the illusion of cooperative behaviour.
However, using rudimentary or “cheating” mechanisms to simulate cooperative
behaviour in squad-based shooter games is less than ideal. Moreover, the use of
deterministic techniques results in repetitive and predictable behaviour.
1 A non-playable character is any agent in the game not controlled by a human player.

29



In order for NPCs to work together effectively they must display tactical
team behaviour. Team tactics can be defined as the set of methods used by a
team for attaining their common goals. As tactics are highly dependent on the
situation [1] (i.e. terrain, team supplies, enemy movement, etc) it is very difficult
for game developers not only to hardcode the team tactics themselves into the
AI of the NPCs (commonly referred to as game-AI) but also to decide when and
where it would be effective to use certain tactics. Developers must create an AI
architecture that allows a team of NPCs to communicate and coordinate their
behaviour in an intelligent manner, such that they display effective group ratio-
nal behaviour. This task is by no means trivial as achieving coordination among
multiple autonomous agents in any domain can be a difficult task and shooter
games are set in very complex environments. As such, developers of shooter
games are still striving to create teams of NPCs that are able to correctly assess
a situation, choose effective courses of action for each team member and work
together to achieve their common goal by displaying effective team behaviours.
We propose that evolutionary computation (EC) techniques, in particular ge-
netic programming (GP), have the ability to discover effective and novel team
behaviours automatically and that these behaviours can be formally analysed to
show that they are tactically proficient.

There are a number of open research questions that we aim to answer:

1. Can genetic programming be used as a technique to successfully evolve ef-
fective and novel tactical behaviours for teams of non-playable characters in
shooter games?

2. Can the behaviours of evolved teams be formally analysed to discover the
team behavioural characteristics required for teams to perform effectively?

3. Does explicit communication between the team agents encourage more co-
operative team behaviours and allow for more effective team behaviours to
emerge from the evolutionary process?

1.2 Related Work

In the past, EC techniques have been comprehensively applied to board games
(e.g. checkers [2]) and card games (e.g. blackjack [3, 4]) in attempts to find op-
timal playing strategies. However, EC techniques have not been used as exten-
sively in the exploration and research of AI in computer games. In general, the
environment and agent behaviours in a computer game are very complex. Thus,
developers have been hesitant to introduce EC techniques into their AI systems
as there is a fear the evolutionary algorithm will not find good solutions. Never-
theless, a small number of games have taken the risk of incorporating EC into
their game-AI and have proven to be very successful. Such games include: Black
& White [5] and S.T.A.L.K.E.R.: Shadow of Cherynobyl [6]. As EC techniques
are very resource intensive and can take a long time to produce solutions, they
are more suited to offline game-AI development (i.e. during game development)
as opposed to online (i.e. evolving while the game is being played). The research
community has begun to realise the potential of EC techniques as developmental
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tools for game-AI. Champandard [7] used a GA to successfully evolve NPCs in
an first-person shooter game to dodge enemy fire. Ponsen et al. [8] have used
GAs off-line to design tactics for an RTS game. Cole et al. [9] used a GA to
successfully tune an NPC’s weapon selection parameters in a shooter game.

A few attempts have been made at evolving teams of NPCs for shooter games
[10, 11]. However, neither of these methods are ideal for game developers to use to
create tactically sound behaviours. In both cases, the team’s behaviour is evolved
in an adaptive manner, while the game is being played (i.e. online), so developers
cannot tell or test, in advance, what behaviours the NPCs will exhibit or how
tactically proficient they will be. Moreover, in the first system [10], a human
player is required to specify, which NPC attributes are to be evolved and the
second mechanism [11] requires a number of game-specific enhancements to the
GA paradigm in order to work, such as a history fallback concept.

GP has been successfully used to simulate team evolution in a number of
different simulated domains. GP was first applied to team evolution by Haynes
et al. [12]. Luke and Spector [13] used GP to successfully evolve predator strate-
gies that enable a group of lions to successfully hunt gazelle. In Luke’s work,
heterogeneous teams are shown to perform better than homogeneous teams. GP
has also been used to enable a team of ants to work together to solve a food
collection problem [14]. The ants must not only cooperate in order to reach the
food but must also work together to carry it as it is too heavy for one ant to carry
alone. Richards et al. [15] used a genetic program to evolve groups of unmanned
air vehicles to effectively search an uncertain and/or hostile environment. The
environments used in Richard’s experiments were relatively complex, consisting
of: hostile enemies, irregular shaped search areas and no fly zones. In addition,
GP has been used to successfully evolve sporting strategies for teams of volley-
ball players [16] and teams of soccer players [17]. We hypothesise that GP can
be used to evolve effective and novel team behaviours for shooter games in a
similar manner as has been done in other domains.

In the past, there has been little research on how to compare evolutionary
computation solutions at a phenotypic level. Typically, phenotypes are compared
at a fitness level [18]. However, this is a very crude measure and is not useful in
more complex environments. Another, more expressive approach is to compare
phenotypes at a behavioural level by recording agents responses to stimuli and
comparing the responses using a distance metric [19]. As the team chromosomes
evolved in our work are quite complex, a simple distance metric cannot be used to
analyse their behaviour. Therefore, we must develop our own phenotypic analysis
method that allows for the formal analysis of team behaviours. This technique
need not be constrained to our research alone and could potentially be used to
analyse team behaviours in any domain that involves cooperative teamwork.

In a study conducted by Barlow et al. [20], it was found that role assignment,
communication and coordination are the three main factors that contribute to
a team’s success. Moreover, Best and Lebiere [21] state that communication is a
necessary prerequisite to teamwork. In the past, GP has been used to successfully
evolve team behaviours when there was no explicit communication between team

31



members [13, 16, 22]; the agents coordinate their behaviour and cooperate by
evolving to do so implicitly. To this end we wish to investigate the effect, if any,
explicit communication between the team members has on teamwork and if it
encourages the evolution of more effective team behaviours.

2 Research and Study

2.1 Goals

The following hypotheses are presented in this research:

Hypothesis 1

“Genetic Programming can be used to develop effective and novel tac-
tical behaviours for teams of non-playable characters in shooter games.”

An “effective” tactical behaviour can be described as any behaviour that
enables the team to achieve their common goal on a consistent basis. In the case
of shooter games, the main goal of the team is to defeat their common enemy so
the team’s effectiveness can be measured as its win percentage2 of games played.
A “novel” tactical behaviour can be described as any behaviour that is new or
different to those behaviours that are already known to exist.

Hypothesis 2

“An analysis of the evolved team behaviours will reveal the be-
havioural characteristics required for teams to perform effectively.”

A phenotypic analysis will be performed on evolved teams in order to assess
their behaviours. The ability to analyse the behaviours of teams should aid
game developers in the understanding and design of effective team behaviours by
uncovering what attributes are needed for teams to perform effectively. In order
to fully test this hypothesis, the behavioural characteristics that are extracted
from this process will be used to manually create a new team which will then be
tested for effectiveness.

Hypothesis 3

“Explicit communication between the team agents should allow for
more effective team behaviours to emerge from the evolutionary process.”

Explicit communication will be used to enable agents to share perceived in-
formation (such as the position of the enemy or items) and to send and receive
tactical commands (such as telling a teammate to provide covering fire or to re-
treat from a position) to assess the effect, if any, explicit communication between
team agents will have on the effectiveness of the teams that are evolved.
2 Draws are not counted in the measure of effectiveness as they are very uncommon.
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2.2 Current Status

Some of the above goals have been partially achieved in our on-going research[23–
25]. In previous work, we successfully evolved a team of NPCs to defeat a single
powerful enemy agent using GP [23]. This type of environment is akin to single
player shooter games where the single enemy agent can be viewed as the human
player playing against a team of NPCs (i.e. the evolved team). The enemy agent
uses hand-coded desirability algorithms to rationally choose which goal to pursue
(see section 3), has a health level equal to the entire team of agents and begins the
game with the strongest weapon. This work was extended to evolve teams against
the enemy agent in environments of varying difficulty [25]. In these experiments,
we show that the difficulty of the environment has a bearing on the ability of the
genetic program to evolve effective teams. Our first goal is partly accomplished as
we have shown that it is possible to evolve effective team behaviours for shooter
games using GP [23, 25]. These behaviours have been assessed over 1000 games
to get a measure of their effectiveness (see section 3.2).

Part of the second goal has also been accomplished as we developed a tech-
nique that allows for the analysis of evolved team behaviours by comparing
teams at a phenotypic level [24]. Our technique successfully extracts common
behavioural traits of teams that perform similarly. Thus, it can be used to reveal
the behavioural characteristics that are required for teams to perform effectively.
However, the technique has limitations and can be improved. The third goal has
not yet been addressed.

2.3 Future Plans

Our first goal is partly accomplished as we have shown that it is possible to
evolve effective team behaviours for shooter games using GP. However, we have
not yet tested the generalisability or novelty of these evolved behaviours. Thus,
testing these will be our immediate tasks for future work.

Our second goal has also been partly accomplished as we have created a tech-
nique that enables us to successfully analyse evolved team behaviours. However,
it does have limitations. We plan to improve the phenotypic analysis technique
used in [24] in order to more accurately analyse the team behaviours.

Our third goal will involve two communication experiments. The first will
examine the effect, if any, that sharing perceptual information between team
agents has on the effectiveness of evolved teams. In our second experiment, ex-
plicit communication nodes will be added to the genetic program in an attempt to
evolve effective communication of both perceptual information and tactical com-
mands. Here, communication can only emerge through the evolutionary process
as agents must evolve to send messages and respond appropriately to messages.

When my PhD is completed, I would like to stay in academia and continue
research of EC and game-AI.

2.4 Study

My PhD duration is four years and I am currently in my third year of study.
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3 Results

The environment is a 2-dimensional space, enclosed by four walls and is built
using the Raven game engine [26]. Items are placed on the map at locations
equidistant from both the team starting points and the enemy starting point.
These items consist of health packs and a range of weapons that respawn after
a set time if collected (see Fig. 1).

Fig. 1. Simulation environment map

Both types of agent (i.e. team agents and enemy agent) use the same under-
lying goal-driven architecture [27] to define their behaviour. Composite goals are
broken down into subgoals, hence a hierarchical structure of goals can be cre-
ated. Goals are satisfied consecutively so the current goal (and any subgoals of
it) are satisfied before the next goal is evaluated. If an NPC’s situation changes,
a new, more desirable goal can be placed at the front of the goal-queue. Once this
goal is satisfied, the agent can continue pursuing its original goal. Although the
underlying goal architecture is the same, team agents use a decision-making tree
evolved using GP to decide which goal to pursue, whereas the enemy agent uses
desirability algorithms associated with each goal. The desirability algorithms are
hand-coded to give the enemy intelligent reasoning abilities.

–

DesirabilityGetHealth = a×
(

1−Health

Distance to Health

)
where a is a random bias, Distance to Health is the distance to the near-
est health pack (if known) and Health is the agent’s current health. If
Distance to Health is unknown the desirability returned will be zero.
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–
DesirabilityAttack = b× Total Weapon Strength×Health

where b is a random bias and Total Weapon Strength is the proportion of
ammunition the agent has for all weapons. The agent will only attack if its
attacking ability (i.e. Total Weapon Strength) and health are both high.

–

DesirabilityGetWeapon = c×
(

Health× (1−Weapon Strength)
Distance to Weapon

)
where c is a random bias, Weapon Strength is the proportion of ammunition
the agent has for the weapon and Distance to Weapon is the distance to the
nearest ammunition pack for that weapon (if known). If Distance to Weapon
is unknown the desirability returned is zero. Each weapon for which ammu-
nition can be retrieved has an associated desirability algorithm.

–
DesirabilityExplore = d

where d is a constant. An agent will only explore if all other desires are low.

The random biases cause the enemy’s behaviour to vary from game to game.
Both types of agent have a memory allowing them to remember information

they perceive. Any dynamic information, such as ally or enemy positions, is
forgotten after a specified time. If more than one team agent has been recently
sensed by the enemy, the enemy will select its target based on distance. Weapons
have different ideal ranges within which they are more effective and bullets for
weapons have different properties, such as velocity, spread, etc.

3.1 Goal 1 - Evolving Teams

The entire team is viewed as one chromosome, so fitness, crossover and mutation
operators are applied to the team as a whole. A chromosome comprises five GP
subtrees (one for each agent), so evolved teams are heterogenous (see Fig. 2).

Evolutionary runs have been completed in environments where agents had
perfect vision through a 180 degree field of view [23] and in environments where
team agents have restricted viewing distances of 50, 200, 350 and 500 pixels
and fields of view of 90 and 180 degrees [25]. In the latter work, the enemy has
twice the viewing distance of a team agent but their fields of view are identical.
Twenty runs are completed in each of the environments and 100 chromosomes
are evolved over 100 generations in each of the runs.

Node Sets A strongly typed genetic program [28] is used in order to constrain
the type of nodes that can be children of other nodes. There are five node sets:

– Action nodes represent goals the agent can pursue and the IF statement.
– Condition nodes represent conditions under which goals are to be pursued.
– Position nodes represent positions on the map to which the agents can move.
– Environment nodes represent gaming parameters that are checked during

the agent’s decision making process (e.g. ammunition supplies).
– Number nodes represent arithmetic operators and constants.
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Fig. 2. Sample GP chromosome

Fitness Calculation The fitness function takes into account: the remaining
health of both the enemy and team agents, the duration of the games and the
length of the chromosome (to prevent bloat).

RawFitness =
(

(EW × (Games× TSize×MaxHealth−EH) + AH)
Games× TSize×MaxHealth

)

+
(

AvgGameT ime

Scaling×MaxGameT ime

)

StdF itness = (MaxRawFitness−RawFitness) +
(

Length

LengthFactor

)
where Games is the number of games played per evaluation (i.e. twenty),

TSize is the team size (i.e. five), MaxHealth is the maximum health a team
agent can have (i.e. fifty), EH and AH are the total amount of health remaining
for the enemy agent and for all five team agents respectively, EW is a weight
(set to five) that gives more importance to EH than AH , AvgGameT ime is
the average duration of the games, Scaling reduces the impact game time has
on fitness (set to four), MaxGameT ime is the maximum duration of a game
(i.e. 5000 game updates), MaxRawFitness is the maximum value RawFitness
can hold, Length is the length of the chromosome, LengthFactor is used to
limit the influence Length has on fitness (set to 5000) and StdF itness is fitness
standardised such that values closer to zero are better.

Selection, Crossover and Mutation There are two forms of selection used.
The first is a form of elitism where m of the best n chromosomes from each gener-
ation are reproduced unchanged into the next generation. The second method is
roulette wheel selection. Any chromosomes selected in this manner are subjected
to crossover and mutation (given crossover probability of 0.8 and mutation prob-
ability of 0.1 respectively). To increase diversity, there is also a 2% chance for
new chromosomes to be created and added to the population each generation.
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The crossover operator is specifically designed for team evolution [29]. A
random Tsize bit mask is selected that decides which of the team agents in
the parent chromosomes are to be altered during crossover. A ‘1’ in the mask
indicates that the agent at that position is copied directly into the child and a ‘0’
indicates that the agent is to take part in crossover with the corresponding agent
of the other parent. A random crossover point is then chosen within each agent
to be crossed over. The node at the crossover points of corresponding agents
must be from the same node set in order for the crossover to be valid.

Two forms of mutation are used. The first, swaps two randomly selected
subtrees between agents in the same chromosome. Similar to crossover, the root
nodes of the subtrees must be from the same set. The second form randomly
selects a subtree from the chromosome and replaces it with a newly created tree.

Testing for Effectiveness As mentioned in section 2.1, the effectiveness of a
team behaviour can be measured by the team’s win percentage. The behaviour
of the enemy will be slightly different in each game due to the random biases
used when initialising its desirability algorithms. In order to get an accurate
measure of a team’s effectiveness, 1000 games are played per team evaluation
and the percentage of wins recorded. To demonstrate the effectiveness of evolved
teams, their performance is compared to the performance of a team of generic
agents with the same AI as the enemy.

To show that the genetic program gives a strong result, the twenty evolved
teams from each environment are compared against the twenty best teams ob-
tained from a random search of that environment. The sample size used for the
random search is 10000. The random teams are evaluated over 1000 games. The
performance of the evolved teams is compared to the performance of the ran-
dom teams using paired T-tests with a confidence interval of 95% to ascertain
whether the differences are statistically significant.

Generalisability of Effective Teams Although, the test for team effectiveness
shows that teams are somewhat generalisable against variations of the enemy in
their native environment it does not show if they are generalisable to other
enemies and environments. To examine the generalisability of behaviours, the
effectiveness of each team must be assessed in a range of environments and
against different types of enemy. The environment can be changed by altering
the size and shape of the map and the location and quantities of items. The
enemy can be changed by altering the way in which it selects its target or by
giving it greater capabilities such as increased health or speed. A team behaviour
can be said to be generalisable if it can be shown to have a similar effectiveness
in a range of environments and against a range of enemies.

Testing for Novelty In order to test for novelty, we must first have an ex-
isting behaviour set in place to which we can compare the evolved behaviours.
There will be 100 behaviours in the behaviour set that comprises generic and
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random team behaviours. Generic behaviours are derived from the same AI that
is used by the enemy agent in the game. All agents on the team use desirability
algorithms to choose their goals. Different biases are used on the desirability al-
gorithms to obtain a variety of generic team behaviours. Random behaviours are
the best behaviours obtained from a random sample of the set of all behaviours.

One way to measure the novelty of a team behaviour is to check if its perfor-
mance is statistically different to the performance of all the known behaviours.
To obtain a robust measure of performance, 1000 games are simulated for each
behaviour and a paired T-test is performed between the evolved behaviours and
the known set of behaviours using a confidence interval of 95%. If the perfor-
mance of the evolved behaviours are shown to be significantly different to all the
known behaviours then the evolved behaviours are novel as they are different to
the known set. An alternative measure of novelty is presented in section 3.3.

3.2 Results - Goal 1

In the experiments where agents have perfect vision through a field of view of
180 degrees, a number of teams emerged from the evolutionary runs capable of
consistently defeating the enemy agent [23]. When team effectiveness is tested,
the best evolved team attained a win percentage of 94% over the 1000 games.
An additional experiment was carried out to compare the performance of best
evolved team against the performance of a team of generic agents with the same
AI as the enemy. Each team was evaluated over 1000 games to obtain a robust
measure of their effectiveness. In this experiment, the evolved team won 943 of
the 1000 games, whereas the generic team only won 411 of the 1000. The evolved
team significantly outperforms the team of five individually rational agents.

In another set of experiments, evolutionary runs were completed in environ-
ments of varying difficulty [25]. The results show that the level of difficulty of
the environment does have an impact on the genetic program’s ability to evolve
effective team behaviours. The results follow a similar trend for both, the envi-
ronments where the field of view is 90 degrees and environments where the field
of view is 180 degrees. Paired T-tests performed between the resulting groups of
teams from each environment show a statistically significant increase in fitness of
evolved teams as the viewing distance of agents increase for a confidence interval
of 95%. The number of games won (out of 1000) by the best evolved team in
each of the environments were also recorded. Generally, as the level of difficulty
of the environment decreases, the number of games won by the best evolved
team increases. In the most difficult environments, where the viewing distance
of agents is 50 pixels, the maximum win percentage for any of the teams is less
than 8% of games played. In contrast, the win percentage of the best evolved
team in the least difficult environment, is over 97% of games played.

To test the performance of the genetic program, the twenty evolved teams
from each environment are compared to the twenty best teams obtained from
random search in each environment. The results show that the evolved teams are
statistically better than those obtained from random search with a confidence
interval of 99% in all environments.
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3.3 Goal 2 - Phenotypic Analysis

Our phenotypic analysis approach classifies the behaviours of evolved teams by
grouping teams based on their performance and ascertaining the behavioural
traits common to like-performing teams. Agent types are identified that en-
capsulate the different behaviours agents can display in the game. These types
include: decoys, rocket ammunition gatherers, shotgun ammunition gatherers,
railgun ammunition gatherers, rocket attackers, shotgun attackers, railgun at-
tackers, blaster attackers, evaders, health preservers and cohesive agents. Each
type has specific behavioural traits but types are not mutually exclusive.

1000 games are simulated for each team in which periodic snapshots of the
agents’ game state are taken in order to capture their behavioural information.
The agent types have associated degree of membership algorithms that are used
to calculate the degree of membership each agent has to every agent type by
analysing the captured behavioural information of that agent. Each team agent
receives a probability score for each agent type that indicates how likely their be-
haviour describes each type. When these probability scores have been calculated
for every team agent they are combined into a single team vector describing the
overall team’s behaviour. In order to combine agent probability scores into the
team vector, four different probability ranges are defined for each agent type
such that the number of fair, good, very good and excellent agents of each type
on the team can recorded.

The team vectors are then put into a decision tree classification algorithm to
be analysed to see if there is a correlation between a team’s performance (fitness
score) and the combined behaviours of the team’s agents. We choose to select 10-
fold cross validation for our decision tree analysis to give more accurate results
as our datasets are relatively small (size twenty). The path from the root node
of the decision tree to the leaves should reveal the behavioural characteristics
that are common to teams who perform similarly and the combination of agent
types on a team that allow for good team performance. The performance of each
group of teams in the leaf nodes of the tree are tested to determine if there is
a statistical difference in their performance for a confidence interval of 95%. In
doing this, it can be said that the different behavioural characteristics of each
group of teams lead to a significantly different team performance.

Testing for Novelty In this section, we present an alternative method of de-
termining behaviour novelty to the one outlined in section 3.1. A team behaviour
can be regarded as novel if an analysis of that behaviour shows that the team dis-
plays different behavioural traits to those of the known set of team behaviours. A
technique has been specified that enables the discovery of behavioural character-
istics of teams. To determine the similarity of two team behaviours, a technique
must now be specified to compare the teams based on their behavioural traits.

A technique has been specified that creates a single vector describing the
team’s behaviour. Each point in the vector represents the degree to which agents
on the team fulfill the role of a particular agent type. By calculating the differ-
ence between the corresponding points on two team vectors and summing up
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the absolute values of the resulting differences, a value can be obtained that
ascertains how similar or different the two teams are based on their behaviour.
The higher the value for all comparisons between the evolved behaviour and the
set of known behaviours, the higher the degree of novelty.

3.4 Results - Goal 2

The results of our phenotypic analysis of teams evolved in [23] show that teams
with comparable fitnesses have common behavioural traits [24]. The most ef-
fective teams were shown to have two or more strong attacking agents and one
or two decoy agents. The decoys distract the enemy, whilst the other offensive
team members collect ammunition and weapons before attacking the enemy si-
multaneously. The actions of the decoy agents in these teams do not appear
individually rational but their behaviour is essential to the success of the team.
To test the validity of our approach, a team has been manually created that en-
compasses the behavioural traits of the most effective teams and its performance
assessed. This team scored a win percentage of 87% over 1000 games.

The teams recorded from our experiments in environments of varying diffi-
culty [25] have also been formally analysed but the results have yet to be pub-
lished. The results show that the less effective teams emerging from the most
difficult environments have very little attacking ability with the best teams from
theses environments containing only agents that attack with the weakest weapon.
In contrast, the better performing teams that emerged from the least difficult
environments show clear signs of emergent teamwork. These teams have at least
two very strong attackers as well as two or more good decoy agents to draw away
enemy fire from the attackers. These results compliment those in [24].

4 Achievements and Future Work

Our results show that GP can be used to develop effective team behaviours
in shooter games. The evolved behaviours have been shown to be robust and
somewhat generalisable. A phenotypic analysis of these behaviours shows that
effective teams share common traits. In addition, these evolved behaviours have
been shown to outperform a team of generic agents in the same environment.

Our immediate tasks for the future will be to explore the generalisability
and novelty of evolved teams as set out in sections 3.1, 3.1 and 3.3 respectively.
We would also like to improve on our phenotypic analysis technique as it has
limitations. When the communication experiments are complete the phenotypic
analyses of teams may reveal how important a role communication plays in a
team’s performance. The bulk of our future research will involve exploring the
effects communication between agents has on the evolution of team behaviours.
Agents could evolve to share perceived information and to send messages and
respond accordingly to messages received, which could allow for much more
effective team behaviours to evolve.
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5 Feedback

The Doctoral Consortium will provide me with a chance to get feedback on
my research from leading experts in the field of GP. I would like to know how
relevant or interesting they find my research, in its contribution to the scientific
and gaming communities. I am confident they will provide me with constructive
criticism that will help me along the way to achieving my research goals.
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Abstract. During the operation of pipeless plants, decisions have to
be made on the scheduling of the production, on the assignment of the
equipment and on the routing of the vessels. Many interacting degrees of
freedom prohibit the use of exact mathematical algorithms to compute
optimal schedules. We propose an evolutionary scheduling algorithm that
uses a simulator with internal heuristics as a schedule builder in the
evaluation of the fitness of the individuals. Repair algorithms eliminate
most infeasibilities before passing a candidate solution to the schedule
builder. The algorithm yields up to 17 % shorter makespans than the
as-soon-as-possible (ASAP) solution.

1 Introduction of the Research Area

Many real-world planning and scheduling problems are too complex to be treated
by exact approaches. It is nonetheless often possible to model the problem at a
high level of detail and to simulate it by appropriate tools. In practice, “opti-
mization” is then often done by extensive simulation studies. Due to the large
number of degrees of freedom, it is, however, unlikely that a good solution is
found by this approach. A promising approach is to combine simulation with
optimization in a way where some degrees of freedom are varied by the opti-
mization algorithm whereas others are handled directly by the simulation which
often includes heuristics to solve subproblems. Evolutionary algorithms (EAs)
are particularly suited for this kind of hybrid optimization as they can embed
simulations as black-box computations of cost function values.

1.1 Optimization of Pipeless Plants

Pipeless plants are an alternative to traditional multiproduct batch plants with
fixed piping. Their distinctive feature is that the chemical processing steps are
performed at stationary processing stations and that the substances are moved
around in mobile vessels by automated guided vehicles (AGVs) instead of pump-
ing them through pipes. The sequences of the production steps are defined by
the recipes that determine the order in which a vessel must visit the different

43



2

processing stations. Pipeless plants offer a high degree of flexibility. A change of
the priorities of the orders can be realized by re-directing vessels. The reduction
of fixed piping results in significantly less time and effort for cleaning and ster-
ilizing when a product changeover occurs. The cleaning of the vessels is carried
out in separate cleaning stations and the processing stations are cleaned in place.
It is not necessary to shut down a number of coupled units of the plant during
cleaning cycles.

The increased flexibility of a pipeless plant comes at the expense of a higher
degree of complexity. Computer-aided operation is indispensable for pipeless
plants. During plant operation a set of coupled problems has to be solved. Deci-
sions have to be made on the scheduling of the production orders, on the assign-
ment of orders to vessels, stations and AGVs, and on the conflict-free routing of
the mobile vessels.

1. Scheduling of recipe steps
Several batches and products are handled in parallel, thus the best produc-
tion sequence must be decided. A schedule must guarantee that the steps of
one product are executed in the sequence defined by its recipe.

2. Assignment of equipment
Each recipe step must be assigned to a vessel, an AGV and a station. The
chosen equipment must be available at the desired time and has to possess
the necessary technical functions.

3. Routing of AGVs
After the assignment, the selected AGV must pick up the vessel and trans-
port it to the selected station. The AGVs must not collide with each other
during transports.

The time that a recipe step needs for its execution at a station may depend
on the chosen equipment and on the routing of the vessels. A heating step for
example takes longer when the material has cooled down while the vessel waited
for further processing. The mass and the temperature of the content of a vessel
are therefore included as state variables in our simulation model.

1.2 Literature Review

Since the idea of pipeless plants came up in the early 1990s, the scheduling of
pipeless plants has been a topic of research. The problem is mostly modeled by
mixed-integer linear or nonlinear programming (MILP, MINLP). The mathe-
matical programs are often combined with other methods. [1] and [2] combine
the MILP with a discrete event simulator to model the processing durations. The
dynamics of the processing durations are neglected in most other publications. [3]
use scheduling heuristics and [4] extend their MINLP with a queuing approach.
[5] consider constraint satisfaction techniques to find an optimal schedule and
deal with vessels that possess their own moving device. Then the assignment
of a vessel to an AGV is not necessary. Many publications assume fixed travel
times, and a detailed routing of the AGVs and the elimination of collisions are
often omitted.
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The problem of efficiently operating a pipeless plant has often been simplified
in the literature. To our knowledge, only in the modeling, simulation and heuris-
tic scheduling environment PPSIM [6] the problems mentioned in Section 1.1 are
considered simultaneously without simplifying assumptions. This PhD work pro-
poses an evolutionary scheduling algorithm to identify the optimal sequencing
of the recipe steps that minimizes the makespan. The individuals are evaluated
by the simulation algorithm of PPSiM.

2 Research and Study

2.1 Goals

The goal of this PhD research is to enhance the existing modeling and simulation
software tool for pipeless plants [6] by an optimization routine. We want to
be able to optimize large scale real life problems in a reasonable amount of
running time. It was decided to optimize by an EA as it does not rely on explicit
information about the problem and its structure but can evaluate the quality of a
proposed solution by simulation. The EA should be combined with the simulator
in an efficient way. The work to be accomplished can be divided into three work
packages:

1. Study the existing software and the related literature.
2. Implement the evolutionary optimization algorithm.

(a) Decide on the representation of individuals.
(b) Handle infeasibilities due to the highly constrained problem.
(c) Integrate the optimization algorithm into the existing software.

3. Analyze and improve the new algorithm.
(a) Test the algorithm on different problems.
(b) Tune the parameters.
(c) Improve the efficiency of the algorithm in terms of running time and

performance.

2.2 Current Status

An EA responsible for the scheduling problem in the operation of pipeless plants
has been implemented. Repair algorithms aimed at reducing the number of in-
feasible individuals have been designed and the algorithms were successfully
integrated into the simulation software. The task of the simulation software is
to provide a heuristic initial solution and to evaluate the individuals by solving
the assignment and routing problems by heuristics. The work done so far was
published in a research report [7] and was presented on a workshop on computa-
tional intelligence in December 2007 [8]. I have furthermore submitted a paper
to the European Symposium on Computer Aided Process Engineering [9], which
takes place in June 2008, and to a special issue of the Journal of Heuristics [10].
The original ASAP solution of [6] could be improved by adapting the possible
starting times of recipe steps. The makespan could be improved by up to 18 %.
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Additionally, the computation time was significantly reduced by up to 79 %
by specifying the sequence of recipe steps by the EA [10]. I am currently busy
with work package 3a. First tests on small problems provide promising results,
however, for larger problems there are still many infeasible individuals and their
evaluation is time consuming.

2.3 Future Planning

After the tuning of the parameters, the next step is to improve the efficiency of
the algorithm. There are three lines of future research.

1. The evaluation of candidate solutions via simulation and heuristics requires
much calcuation. It takes between 0.2 and 1.5 seconds to evaluate one indi-
vidual, depending on the chosen problem example. To speed up the calcu-
lations, it is planned to work with approximations in the routing heuristic.
The individuals can be evaluated exactly after several generations of the
algorithm. This means that there are generations of the algorithm that in-
clude possibly infeasible individuals, which implies an uncertainty in the cost
function of the EA. I will investigate how the EA can handle the interplay
of exact calculations and approximations.

2. Figure 1 illustrates a problem with the assignment of the equipment. Suppose
that the first two recipe steps of the shown chromosome have already been
scheduled on AGVs. The third recipe step should now be scheduled as soon
as possible. It would fit in the gap of the occupation of AGV 2, but then
the previously calculated routing of recipe step 1 would be wrong since the
AGV would then start at a different location in the plant. In the current
implementation only equipment that is not used at a later point in time can
thus be chosen, in this example AGV 1. Since this selection may lead to
a deterioration of the quality of the solution, the integration of gap filling
algorithms will be explored.

AGV 1

1 2 3 4 5 6

t

1

2

Fig. 1. Gap filling problem

3. The heuristics used by the simulator to evaluate the fitness of the individuals
may limit the EA by not allowing sufficient exploration of the available
decisions. The assignment of the equipment should therefore be optimized
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as well. The equipment can be varied via a second evolutionary layer. Each
individual is evaluated by the currently implemented heuristics. Then the
new EA searches alternative equipment for a random recipe step. The routing
decisions, however, should not be given to an EA. Instead more research will
be done to improve the routing heuristic by incorporating possible blockings
into the routing decisions [11].

After finishing my PhD I would like to go abroad as I have always liked living
in other countries and getting to know different cultures. I could imagine to work
as a PostDoc in the area of operations research and optimization. Coming from
a mathematical background, I enjoyed applying optimization to problems from
chemical engineering. I am now interested in getting to know new challenging
areas for optimization. In the long run, I want to take a commercial career, e. g.
in a consulting company, to optimize real world problems.

2.4 Study

I am enrolled as a PhD student at the “Graduate School of Production Engineer-
ing and Logistics”1 and receive a scholarship from the Ministry of Innovation,
Science, Research and Technology of the State of North Rhine-Westphalia. The
graduate school offers interdisciplinary courses, seminars and research projects
in the areas of production and logistics. The study comprises three years. Next
to their scientific research, the participants of the graduate school have to obtain
a total of 30 credits on lectures and exercise courses, on soft skill courses such
as moderation and presentation techniques, and on scientific colloquia in which
the students regularly present their work and discuss problems with each other.
I am in my final year; my scholarship ends in September 2008. I have finished
the course program and obtained all required credits such that I can dedicate
the remaining time to finishing my PhD research and writing the thesis.

3 An Evolutionary Scheduling and Simulation Approach

The operation of a pipeless plant is a set of complex interacting problems. Making
decisions for all problems at once is too time consuming, therefore the problems
are treated hierarchically. The EA solves the scheduling problem and the prob-
lems of assignment, routing and determining the durations of recipe steps are
solved via heuristics and simulation.

3.1 Methodology

The individuals are encoded in an operation-based chromosome as the sequence
of the execution of the recipe steps of all batches. The steps are identified by
their batch IDs to maintain precedence relations in the recipes during recom-
bination and mutation. The idea is illustrated in Figure 2. The order of the
1 www.mb.uni-dortmund.de/graduate
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sequence indicates the priority of the recipe steps. A chromosome entry directs
the schedule builder to schedule the first unscheduled recipe step of the cor-
responding batch as soon as possible without delaying higher-priority steps. It
is an indirect chromosome since a schedule builder is necessary to calculate a
full schedule. Since each batch ID must occur a certain number of times in the
chromosome, a permutation-based recombination operator is the obvious choice.
The order crossover is used here and a swap mutation is performed on the newly
generated individuals. The parents are selected in a tournament. We use the
(µ + λ) generation strategy with a replacement selection.

Batch A 1

Recipe Steps

2 3

1 4 5 2 6 3

A B B A B A

Schedule Encoded By Batch IDs

Precedence

4 5 6Batch B

Equivalent Recipe Step IDs Chromosome

Fig. 2. Encoding of the chromosome

Constraint Handling There are several possible reasons for infeasibility of
new individuals. They can be divided into three classes and require different
treatment as listed in Table 1. The simplest reason for infeasibility is the viola-
tion of the precedence constraints in a recipe. This is avoided by the encoding
into an operation-based chromosome. Infeasibilities of class II depend only on
the scheduling decisions and can be checked before the simulation run. They are
solved by repair algorithms that employ problem-specific knowledge on recipes,
vessels and stations. Infeasibilities of class III depend on the output of the simu-
lation. They are only realized after the transfer times and processing times have
been calculated and are penalized by the schedule builder after the evaluation
of the individual.

Reason for infeasibility Treatment

Class I Precedence violation Chromosome Direct constraint handling

Class II
Occupied stations

Repair
Indirect handling

Too few vessels of explicit constraints

Class III
Time constraint violated

Penalty
Indirect handling

No route found of implicit constraints

Table 1. Treatment of infeasibility
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Repair Algorithms Although repair algorithms have the disadvantage of pos-
sibly steering the EA into the wrong direction, the implementation of the two
repair algorithms described below is advantageous to reduce the number of infea-
sible individuals. Performing a repair inside the EA before passing the solution to
the schedule builder has shown to provide better results than when dealing with
the infeasibility inside the simulator by postponing currently infeasible steps.

The most important property to be satisfied by the repair algorithms is
that the meaning of the chromosome, namely to define a list of priorities, is
maintained. Recipe steps later in the chromosome should not delay recipe steps
from an earlier position in the chromosome. However, if a recipe step cannot be
scheduled at its position, its execution may be made possible by inserting a step
of lower priority.

It is possible that a newly created individual is infeasible because a recipe step
needs to be processed at a station at which another batch is still being executed or
waiting for its next transport. The repair algorithm is explained by the example
individual in Figure 3. Suppose that there are only two charging stations in the
plant. After the fourth recipe step (charging batch 3) both charging stations
are occupied by batch 2 and batch 3. The next step (charging batch 4) is thus
infeasible. The first recipe step in the sequence that frees a charging station is
the seventh entry (heating batch 3). By inserting this step before the currently
infeasible step, batch 3 is moved from the charging station to the heating station
and batch 4 can be processed. It must, however, be checked that a heating station
is available. If not, another repair is needed.

charge heat charge charge charge mix heat
1 1 2 3 4 1 3

2 charging stations available

n = 1 n = 2 n = 3n = 1 n = 0

n := number of occupied charging stations
insert

Fig. 3. Repair algorithm for occupied stations

The second repair algorithm ensures that there is a free vessel available when
a new batch should be started. The number of vessels is fixed as we assume a
given plant topology. The algorithm determines for each chromosome position
how many batches are in process. If at some point this number exceeds the
number of vessels, all recipe steps of the currently infeasible batch are moved to
a position after a batch has been finished and thereby frees a vessel. Note, that
entries of the batch which occur behind this position, are not moved forward as
this would violate the specified order of the priorities.

Both repair algorithms are executed in an alternating way until the solution is
feasible. Since the algorithms may perform conflicting exchanges of recipe steps,
it may happen that feasibility is never established. To prevent an infinite loop,
the algorithm for repairing an occupied vessel is adapted after some iterations.
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Instead of moving (some recipe steps of) a batch to a position where another
batch finishes, the complete batch is moved to the end of the chromosome.
Thereby it is ensured that the feasibility with respect to occupied stations is
maintained and a feasible state is reached.

Simulation Optimization The software PPSiM [6] provides an environment
to model a pipeless plant and to perform simulation studies to compare design
alternatives. The EA is embedded into PPSiM to perform an optimization of
the decision variables. PPSiM computes a production schedule by the simple
ASAP heuristic in which the recipe steps are scheduled in a chronological order
according to their earliest possible start times. The initial population of the
EA consists of multiple copies of this solution and other random solutions. The
software is then used as a schedule builder in the evaluation of individuals to
map the genotype (a chromosome of batch IDs) to the phenotype (a feasible
schedule). It assigns an available and suitable triple of equipment (a vessel,
an AGV and a station) with minimum execution time to each recipe step. The
execution time consists of the transfer time of the AGV to pick up the vessel, the
time needed to transport the vessel to the station and the duration of the recipe
step at the station. The transfer times are calculated by the A* algorithm with
subsequent collision elimination. Collisions are avoided by waiting and evasion
following a first-come-first-serve (FCFS) priority rule. Keeping track of the state
changes of the masses, the temperatures and the concentrations of the contents
of the vessels and knowing the parameters of the vessels and the stations (heating
power, maximum mass flows etc.), the program simulates the exact processing
times of the recipe steps at the station. If it is impossible to find a feasible
schedule for a candidate solution, the simulator assigns a penalty to the fitness
value. It can, for example, happen that AGVs or vessels are blocked by other
equipment such that no route can be found for a recipe step. The penalty is the
larger the more steps cannot be scheduled. The framework is shown in Figure 4
where it can be seen which tasks are accomplished by the graphical interface of
PPSiM, the simulator and the optimizer.

3.2 Experiment

The combination of the EA for the scheduling of the recipe steps and the evalu-
ation by simulation and heuristics is applied to three example problems: a small
test problem, an industrial problem and a benchmark problem from the liter-
ature. Table 2 summarizes the characteristics of the considered problems. The
exact recipes and the plant layouts are available from the author upon request.
The strategies used for the different modules of the EA as well as the parameter
settings are summarized in Table 3. We perform 50 independent runs.

Example 1 This is a simple example since neither tight timing constraints such
as different starting times or deadlines nor much potential for routing conflicts
are present. In Example 1a the AGVs drive at a speed of 0.025 m/s while the
speed in Example 1b is reduced to 0.01 m/s.
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Problem Heuristic Solution Initial Population

Variation

Evaluation Selection

Stop?Best Solution

No

Yes

SIMULATOR OPTIMIZER

Check & RepairVisualization

Definition

PPSiM

Schedule Building

Graphical Interface

& Penalty

Fig. 4. Simulation optimization for pipeless plants

# Recipe steps # Vessels # Stations # AGVs # Batches

Example 1 18 3 6 2 4
Example 2 84 10 7 2 7
Example 3 35 3 8 3 5

Table 2. Characteristics of the examples

Example 2 The underlying production process is a mixing process in which
various substances are charged and the material is mixed, heated and cooled.
The plant area is divided into a production area, an intermediate storage and
parking area, a discharging area and a cleaning area. The production stations
are arranged in a clockwise order to minimize the probability of collisions or
interlockings during the execution of the recipes. The stations are cleaned in
place for 10 minutes after each usage.

Example 3 A herringbone layout (Example 3a) and a linear layout (Exam-
ple 3b) for a problem from the literature [5] are considered. The recipe steps
have fixed processing durations and the AGVs move on specified paths of fixed
transfer times. Thus, a detailed simulation of the chemical processing steps and
of the routing of the AGVs is unnecessary. The vessels possess their own moving
devices, which renders the assignment of an AGV to a vessel unnecessary. There
are buffers such that one AGV can wait in front of a station and one behind a
station. Furthermore there are buffers at certain locations in the plant at which
AGVs can pass each other. This simplifies the routing problem significantly and
it is possible to use the buffers at the stations as a parking position for empty and
clean vessels. We implement the example without buffers and define additional
parking positions at the side of the plant layout. To be able to compare the
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objective minimum makespan
initialization ASAP heuristic and random initialization
representation operation-based chromosome
population size µ = 10
parent selection tournament of size 5
recombination order crossover
recombination probability 100 %
mutation swap
mutation probability 80 %
offspring λ = 2
survival selection (µ + λ) replacement selection
termination criterion 60 seconds

Table 3. Modules and parameters of the EA

results we deduct the times of the additional transfers to these parking positions
from the makespan.

3.3 Results

The results obtained by the presented EA with repair algorithms and evaluation
by simulation and heuristics are shown in Table 4. The percentages indicate the
improvement with respect to the initial ASAP solution. The last column shows
the standard deviation of the found solutions. The improvement for Example 1
is larger than for the industrial Example 2. The best solutions for Example 1
produce the batches not in parallel but rather in a sequential mode. It seems
important not to run too many batches simultaneously. It is a weakness of the
ASAP solution that it starts many batches at once. Thereby vessels are blocking
each other. For the industrial problem, however, it seems that the ASAP solution
has already provided a very good solution. We suppose that this is due to the
efficient plant layout which minimizes the possibility of collisions.

best median worst σ

1a 4652 (-12.5 %) 4676 (-12.0 %) 4700 (-11.6 %) 15
1b 6176 (-17.1 %) 6249 (-16.2 %) 6303 (-15.4 %) 27
2 82751 (-2.6 %) 84780 (-0.2 %) 84929 (-0.0 %) 522
3a 44444 (-4.8 %) 44561 (-4.5 %) 44720 (-4.2 %) 78
3b 47320 (-14.2 %) 50781 (-7.9 %) 51880 (-6.0 %) 1788

Table 4. Results of the EA in comparison to the ASAP solution

For a comparison with the results obtained by constraint satisfaction [5] on
Example 3, Table 5 shows the first found solution and the best found solution
for both layouts. In our case the first solution is the ASAP solution. Our best
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EA Constraint Satisfaction [5]
CPU time makespan CPU time makespan

Herringbone (Example 3a)
First solution 1.97 46680 0.1 63720
Best solution 25.5 44444 722.6 44280

Linear (Example 3b)
First solution 2.31 55161 0.12 70200
Best solution 31.5 47320 876.44 48600

Table 5. Comparison for Example 3

solution for the linear layout is better than the supposedly optimal solution
obtained with constraint satisfaction techniques. Since the authors of [5] did
not explicitly state whether the transfer times are the same in both layouts, we
suspect that we are working with different transfer times in the linear layout.
The CPU times are given in seconds, however, they cannot be compared with
each other since the CPU performances are different. We use an Intel Pentium
4 with 3 GHz and 2 GB RAM, which has a higher computing power than the
P3500 MHz PC of [5]. The results show that the heuristic ASAP solution is found
later than the first solution found by constraint satisfaction, but that it has a
significantly smaller makespan. The EA improves this solution to a solution very
close to the optimum. For both layouts the best solution was found before the
time limit of one minute. The progress plots of the EA are shown in Figures 5
and 6. It can be seen that always one of the randomly created solutions of the
initial population outperformed the ASAP solution.
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Fig. 5. Progress plot for Example 3a
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Fig. 6. Progress plot for Example 3b

4 Achievements

As with many real-world problems, the optimization of the operation of a pipeless
plant is too complex to be solved by an exact approach. Therefore it is treated by
simulation optimization in a hierarchical way. An EA schedules the production
steps and a simulator with heuristics for the assignment of the equipment and
for the routing of the vessels is used as the schedule builder. In examples, the
new scheduling procedure decreased the makespan by up to 17 % compared to
the initial ASAP solution. For a problem from the literature we found a good
first solution and the EA quickly returned a solution very close to the optimum.
In my final thesis, I hope to have developed an efficient algorithm to optimize
the operation of a pipeless plant taking into account the detailed routing and
conflict elimination and the variable processing times that have not been treated
explicitly in the literature yet.

5 Feedback

I highly appreciate getting the chance to present my PhD work in the Doctoral
Consortium as I hope to receive useful feedback and hints from experts on the
topic of evolutionary computing. I am looking forward to fruitful scientific dis-
cussions and I am keen on getting to know about other complex real world prob-
lems that have been successfully tackled with EAs. I would like to know whether
there are other applications in which scheduling, assignment and routing prob-
lems interact in such a dynamic way as it is the case in the operation of pipeless

54



13

plants. Any suggestions, ideas for improvement and critical questions are very
welcomed. Particularly interesting are the topics on how to efficiently integrate
repair algorithms into the EA and how to deal with uncertainties when working
with approximations. I consider the international composition of the Doctoral
Consortium a very interesting opportunity for networking and exchanging of
ideas.
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