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Abstract

Constraint satisfaction has been the subject of many studies. Different
areas of research have tried to solve all kind of constraint problems. Here
we will look at a general model for constraint satisfaction problems in the
form of binary constraint satisfaction. The problems generated from this
model are studied in the research area of constraint programming and in the
research area of evolutionary computation. This paper provides an empirical
comparison of two techniques from each area. Basically, this is a check on
how well both areas are doing. It turns out that, although evolutionary
algorithms are doing well, classic approaches are still more successful.

1 Introduction

A constraint satisfaction problem (CSP) is a finite set of variables all of which have
a corresponding finite domain of values. Besides variables, a set of constraints
exist that restrict certain simultaneous value assignments to occur. The solution
to a CSP is a set of variables that all have a value from their domain assigned
without violating any of the constraints.

Constraint satisfaction has been a topic of research in many different forms.
Lately, science has been concentrating on a more abstract form of constraint satis-
faction in the effigy of binary constraint satisfaction problems. This general model
resulted in a race for the fastest algorithm to solve instances. Just as particular
constraint satisfaction problems, such as k-graph colouring and 3-SAT, binary CSPs
have a characteristic phase-transition. The instances that are to be found in this
phase-transition are among the hardest to solve. Thereby, making them highly
suitable for experimental research.

In early times the backtracking kind of algorithms were used for tackling CSPs.
One of the main advantages of these classic algorithms is that they are sound
and complete [12]. Unfortunately, it seems that such algorithms need enormous
amounts of constraint checks to solve the instances inside of the phase-transition.
To counter for this, many tricks are developed all of which keep the properties of
soundness and completeness intact.

Compared with the classic algorithms the evolutionary computation technique
is a newcomer in constraint satisfaction. Nevertheless, it has grown popular and
the optimisation power of evolutionary algorithms is successfully used in the field



of constraint optimisation and constraint satisfaction. In the past years many
different techniques have been invented to improve the speed and accuracy of
evolutionary algorithms on solving Csps. Especially the matter of accuracy had
to be addressed as evolutionary algorithms are stochastic by nature, thus moving
away from the notion of soundness.

In the next section we show more detail on binary constraint satisfaction prob-
lems. After that we present the two candidates of both research areas. Section 5
provides the experimental setup followed by results and conclusions in Section 6
and Section 7. The last section is reserved for ideas on future research.

2 Binary Constraint Satisfaction Problems

In general, a CSP has a set of constraints where each constraint can be over any
of the variables. Here, we focus our study on binary ¢sps. A model that only
allows constraints over a maximum of two variables. Although, at first this seems
a restriction Tsang has shown [12] that this is not the case by proving that any csp
can be rewritten into a binary cSp. Solving the general CSP corresponds to finding
a solution to the binary form. Although Bacchus and van Beek [1] have shown
that the binary form may, depending on the problem, not be the most efficient
way of handling a CsP, it still remains a popular object of study.

The binary model has led to a study where the object is to find difficult to
solve instances. Collections of these instances serve as a good test bed for exper-
imental research on solving methods. The idea behind finding difficult instances
is that these are most likely to be the instances that only have one solution, yet
without being over-constrained and without any other structure that would make
the solution easy to find. The first models were made using four parameters in
the model: the number of variables, the overall domain size, the density of the
constraints and the average tightness of the constraints. Smith [10] estimated the
number of solutions by using these parameters in a predictor. Thereby, conjectur-
ing the presence of a mushy region where instances with only one solution would
be found.

Theoretical and empirical research have provided better ways of estimating
where hard instances occur, making way to more advanced methods for randomly
generating instances of binary Ccsps. As a consequence, this fires up the competi-
tion among those who search for the winning CSP solver.

3 In the first corner

The term classical is introduced in this paper to differentiate between algorithms
that are based on techniques invented a while ago and those taken from evolu-
tionary computation. The study on the classic algorithms is alive in conferences
such as Constraint Programming. Before discussing the two classic algorithms, we
describe two simple preprocessing algorithms that are also used. Algorithms in
this section have been tested with an adapted version of csplib!

Lesplib is available at http://www.lpaig.uwaterloo.ca/ vanbeek/software/csplib.tar.gz



First an instance is checked for arc-consistency. This property states that for
every variable z, for every value assignment (x,a) that satisfies constraints on x
itself, there exists a value b such that (y,b) satisfies all constraints imposed on z
and y. A variable’s corresponding value is removed from the domain whenever
a value assignment does not comply. Afterwards the arc-consistency algorithm
returns whether or not the binary CSP is arc-consistent. If the arc-consistency
check fails we mark this as an unsolvable CSP instance and stop. Second, just
before starting the search algorithm, we sort the variables in ascending order.
This ordering will be used to choose the next variable that will be assigned a value
during the search process.

3.1 Chronological backtracking

Chronological backtracking (BT) is a simple algorithm dating back to 1965 [6].
It is easy to construct using recursion. We assume the reader has come across
backtracking, therefore we skip the details. This algorithm is selected because it
is easy to understand, and is still able to compete with algorithms in Section 4.

3.2 Forward checking with conflict-directed backjumping

The method forward checking with conflict-directed backjumping (FC-CBJ) is build
up using two techniques. The first, forward checking originates from 1980 [7]. The
second, constraint-directed backjumping was added in 1993 [9]. This combination
is among the fastest in the library! used here.

Forward checking instantiates a current variable and then checks forwards all
the uninstantiated (future) variables. During this process all values incompatible
with the current variable are removed from the domains of the corresponding un-
instantiated variables. The process continues until it has instantiated all variables,
i.e. found a solution, or until it checks a variable that has its domain annihilated.
In the last case the effects of the forward checking, i.e. the shrinking of domains,
is undone and a new value for the current variable is tried.

Conflict-directed backjumping tries to improve the speed of forward checking by
jumping over previous conflict checks that are unnecessary to repeat. To make this
possible more bookkeeping is needed. Every variable is assigned its own conflict
set which contains future variables that have failed consistency checks with the
value assigned to the current variable. More precisely, every time a consistency
check fails between an instantiation of the current variable and an instantiation
of a future variable, the future variable is added to the conflict set of the current
variable. When a domain annihilation of a future variable occurs the variables in
the conflict set are added to the current variable’s conflict set. When we run out
of values to try for our current variable we turn to it’s conflict set joined with the
conflict set of the annihilated variable and pick the variable farthest away from
the current variable. Joining the conflict sets of the new current and old current
variable, and the past set of the old current (minus the new current) ensures that
we keep our information up-to-date.



4 In the second corner

Two evolutionary algorithms will represent the current state of evolutionary com-
putation on solving binary csps. These were selected as the best out of all methods
studied in [3] and [5]. Note that the EAs presented here all try to minimise the
fitness function. A fitness of zero equals to finding a solution.

4.1 Microgenetic iterative descend method

The microgenetic iterative descend (MID) method is a rather technical evolutionary
algorithm. It uses a small population of about 10 individuals. The results used
in this paper are taken from a study by Eiben et al. [5] but the original idea and
research is done by Dozier et al. [2, 4]. This study involves gradually improving
the general idea of using heuristics and breakout mechanisms to solve csps. The
implementation of Eiben et al. is a re-implementation of the versions described in
(2, 4].

The core of MID is the breakout mechanism used to reduce the chance of getting
stuck in local optima. Basically the breakout mechanism is a bookkeeper for pairs
of values that have been involved in a constraint violation when the algorithm
previously got stuck in a local optimum. The collection of breakouts with corres-
ponding weights that is build up during the search is used in the fitness function
of the evolutionary algorithm. Equation 1 shows that the fitness function com-
prises of two parts. First, the sum of all violated constraints counted per variable.
Second, the sum of all weights of breakouts that are used by the solution. This
discourages the appearance of solutions that make use of pairs of values known to
appear in local optima.

fitness(solution) = Z V(v) + Z B(b), (1)

vEvariables bebreakouts

where V(v) is the number of violated constraints corresponding with variable v
and where B(b) is the weight corresponding with breakout b or 0 if b does not
exist.

4.2 Stepwise Adaptation of Weights

The stepwise adaptation of weights (SAW) method is an extension for evolution-
ary algorithms that is intended to increase the efficiency of the search process.
The earlier evolutionary algorithms only used a fitness function that counted the
number of constraint violations. Obviously, this is a blind way of searching that
completely ignores possible knowledge of, for instance, the internal structure of a
problem. The SAW method is a general technique for adding this kind of knowledge
to the fitness function.

The sAw method works by adding a weight w, to each constraint ¢ of the csp
instance to solve. These weights are all initialised to one. When the evolution-
ary algorithm is running, its main loop will be paused every now and then to
update the weights. Within an update each weight w, is incremented with one



if the corresponding constraint ¢ is violated by the best solution in the current
population.

By having this weight vector included into the fitness function of the evolu-
tionary algorithm we hope to force the evolutionary algorithm into focusing more
on constraints that seem hard to satisfy during a search. Equation 2 shows how
the weights are included in the fitness function. Note that keeping the weights
w, set to one during the run of an evolutionary algorithm would result in a plain
evolutionary algorithm, that is, without SAw.

fitness(solution) = Z we - C(c) (2)
ce€constraints

1 if ¢ is violated by solution,

0 otherwise.

where C(c) = {

5 Experiments

We randomly generate instances of binary csps by using model B [8]. Based on the
parameter settings we generate a binary CSP with the given number of variables, all
with the same given domain size. Then we use the density parameter to calculate
the number of constraints as a portion of the maximum number of constraints
possible. The constraints are distributed uniform randomly between the variables.
The same method is applied to induce the tightness of each constraint.

The test set comprises of instances created with two parameters fixed and two
parameters varied. The number of variables and the overall domain size is set
fixed to fifteen. The constraint density and average tightness are varied from 0.1
to 0.9 with a step size of 0.2. Thereby, creating 25 different pairs of density and
tightness. For each of these pairs we randomly generate 25 instances. Because
of the stochastic nature of evolutionary algorithms we let each of them do ten
independent runs as in [3, 5].

We measure the percentage of solutions found and the average of constraint
checks for each pair of density and tightness. Note that the classic algorithms
are sound, therefore the percentage of solutions presented is the actual percentage
of solutions in the test set. When an evolutionary algorithm reaches the same
percentage it has actually found a solution to every csp that had one. Whenever
an evolutionary algorithm is not able to find a solution within a fixed number of
generated proposed solutions it is terminated. This number is fixed to 100,000 for
both evolutionary algorithms.

6 Results

A quick look at the results in Table 1 shows three distinct “regions” of parameter
settings. First, the upper left where the density and tightness are low reveals that
all instances have solutions that may easily be found by every algorithm. Second,
opposite of the left corner where density and tightness are high we see that none



of the instances can be solved. Third, between these two regions a mushy region
exists where not for every pair of density and tightness we may solve all of the
instances. Furthermore, here the algorithms need significantly more constraint
checks to determine the solution or to determine that no solution exists.

den. alg. tightness
0.1 0.3 0.5 0.7 0.9
BT 1.00 110 1.00 114 1.00 130 1.00 584 0.96 534
0.1 FC-CBJ 1.00 1529 1.00 1431 1.00 1346 1.00 1254 0.96 1044
MID 1.00 10 1.00 40 1.00 210 1.00 870 0.96 29230
SAW 1.00 10 1.00 10 1.00 20 1.00 90 0.64 11590
BT 1.00 117 1.00 167 1.00 9169 0.68 150270 0.00 42702
FC-CBJ 1.00 1395 1.00 1085 1.00 869 0.68 16750 0.00 20008
03 MID 1.00 93 1.00 1550 1.00 10013 0.52 1004772 0.00 3100000
SAW 1.00 31 1.00 62 1.00 1116 0.23 21281 0.00 3100000
BT 1.00 131 1.00 4351 1.00 103228 0.00 22218 0.00 4392
05 FC-CBJ 1.00 1285 1.00 854 1.00 15444 0.00 6813 0.00 5208
MID 1.00 520 1.00 9204 0.90 1393184 0.00 5200000 0.00 5200000
SAW 1.00 52 1.00 416 0.74 557544 0.00 5200000 0.00 5200000
BT 1.00 152 1.00 12974 0.00 194909 0.00 6250 0.00 4300
o7 FC-CBJ 1.00 1173 1.00 1044 0.00 41851 0.00 4619 0.00 3982
MID 1.00 1460 1.00 44092 0.00 7300000 0.00 7300000 0.00 7300000
SAW 1.00 73 1.00 5329 0.00 7300000 0.00 7300000 0.00 7300000
BT 1.00 209 1.00 121187 0.00 76826 0.00 3265 0.00 2349
0.9 FC-CBJ 1.00 1097 1.00 9454 0.00 24563 0.00 3561 0.00 3412
MID 1.00 3102 1.00 764784 0.00 9400000 0.00 9400000 0.00 9400000
SAW 1.00 94 1.00 361712 0.00 9400000 0.00 9400000 0.00 9400000

Table 1: Success percentage (left) and average number of constraint checks needed
(right) of two classic algorithms (BT and FC-CBJ) and two evolutionary algorithms
(MID and saw) on 25 different parameter sets of density (den.) and tightness
where the number of variables and the overall domainsize is set to 15. Each result
is averaged over 25 instances. In the case of the two evolutionary algorithms the
number of solutions found does not imply the number of solutions possible because
these algorithms are not sound. The mushy region is indicated using italics.

Looking at the lower right corner we see the large difference in the number of
constraint checks for the classic algorithms and for the evolutionary algorithms.
The explanation for this difference is twofold. First, the large numbers for evolu-
tionary algorithms are due to the fact that evolutionary algorithms do, in general,
not know when to quit. Second, the small numbers for the classic algorithms are
caused by the instances becoming over-constrained, making it easy to reduce the
search space.



The results of SAW in the upper left region seem a little strange. As evolutionary
algorithms are generally started with a random population we would not expect
them to find solutions quickly. Nevertheless, saw is able to find a solution on
average with fewer than 100 constraint checks for all, except one pair, where the
density or tightness is 0.1. Again the explanation is twofold. Firstly, this version
of SAW uses a population size of one, thus losing little at the first evaluation of
the whole population. Secondly, it employs an order-based representation together
with a greedy algorithm that is successful for easy problems, thus able to solve
them in a few attempts.

When observing all the results we conclude that except for easy problems classic
algorithms are in favour. Because of their speed and because of their ability to
detect when a problem has no solution. When we focus on the classic algorithms
we see that the obvious winner is FC-CBJ. Although it does not beat the other
algorithms in the upper left and lower right regions it absolutely makes up for this
small loss in the mushy region.

7 Conclusions

We have made a comparison of two classic algorithms and two evolutionary al-
gorithms on a test set of randomly generated binary constraint satisfaction prob-
lems. This comparison clearly shows that evolutionary algorithms have to improve
their speed by quite a large factor if they want to compete with an algorithm as
simple as chronological backtracking.

One reason evolutionary algorithms are not promising is that they fail to real-
ize when a problem has no solution. Unlike the classical algorithms that, aided
by small methods such as arc-consistency, are very efficient in pointing out the
impossible. However grim the situation looks, evolutionary algorithms still have
one advantage. In every stage the algorithm has a set of possible partial solutions
which can be handed to the user when we prematurely stop the run.

8 Future research

Just as the rat race on the best CSP solver, the search continues for better ways
to randomly create binary csps. These new ways should be used as soon as flaws
are detected in older ways to make sure comparisons really are sensible.

The additional methods that are invented in the study of csps should not be
over seen in evolutionary computation. For example, the arc-consistency check is
an algorithm that may be employed before a search algorithm is started, weeding
out most unsolvable problems that have a high density and high tightness.

An often employed strategy in evolutionary computation is not to fight the
competition but to embrace it. By including methods or parts of them into the
search process we may create a hybrid evolutionary algorithm. Results are reported
that show this may boost the performance of evolutionary computation when
solving specific CSPs such as graph bi-partitioning [11].
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