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Abstract

In this chapter we describe a problem independent method for
treating constraints in an evolutionary algorithm. Technically, this
method amounts to changing the definition of the fitness function dur-
ing a run of an EA, based on feedback from the search process. Obvi-
ously, redefining the fitness function means redefining the problem to
be solved. On the short term this deceives the algorithm making the
fitness values deteriorate, but as experiments clearly indicate, on the
long run it is beneficial. We illustrate the power of the method on dif-
ferent constraint satisfaction problems and point out other application
areas of this technique.

1 Introduction

The common opinion about evolutionary algorithms (EAs) is that they are
good optimizers, but cannot handle constraints well. This opinion is based
on the observation that the variation operators, mutation and recombina-
tion, are ‘blind’ to constraints. In other words, if the parents satisfy certain
constraints the offspring obtained by mutation and/or recombination might
violate them. In the last couple of years several options have been proposed
to overcome this problem.

Before discussing these options, let us have a closer look on the notion
of a constrained problem. A natural classification of problems can be found
in [16]. This classification distinguishes free optimization problems, where
no constraints are present, and constraint satisfaction and constrained op-
timization problems that do have constraints to be satisfied. A free optim-
ization problem (FOP) is a pair (S, f), where S is a free search space (i.e.
S = Dy x...x D, is a Cartesian product of sets) and f is a (real valued)
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objective function on S, which has to be minimised. A solution of a free
optimization problem is an s € S with an optimal (minimal) f-value. A con-
strained optimization problem (COP) is a triple (S, f, ), where S is a free
search space, f is a (real valued) objective function on S and ¢ is a formula
(Boolean function on S). A solution of a constrained optimization problem
is an s € S with ¢(s) = true and an optimal f-value. A constraint satisfac-
tion problem (CSP) is a pair (S, ¢), where S is a free search space and ¢ is
a formula (Boolean function on S). A solution of a constraint satisfaction
problem is an s € S with ¢(s) = true. Usually ¢ is called the feasibility condi-
tion, and it is defined by a number of constraints (relations) ¢y, ..., ¢, on the
domain, that is the formula ¢ is the conjunction of the given constraints. Sat-
isfying the constraints means finding an instantiation of variables vy,..., v,
within the domains D+, ..., D, such that the relations ¢y, ..., ¢, hold. Solv-
ing a CSP means finding one feasible element of the search space, solving a
COP means finding a feasible and optimal element. Solving COPs by EAs
is extensively treated in [30, 31, 32, 33] and [34], where different options for
constraint handling are given and an experimental comparison of various op-
tions can be found. Such surveys or comparative investigations on EAs and
CSPs in general are more seldom, at this moment we are only aware of [12]
and [16].

Let us note that the problem of handling constraints is present in both
COPs and CSPs. For both cases the commonly listed options for treating
this problem are the following (after [8, 16, 33]).

1. Eliminating infeasible individuals/chromosomes.

2. Penalizing infeasible individuals/chromosomes.

3. Repairing infeasible individuals/chromosomes.

4. Special variation operators preserving the feasibility of the parents.

5. Special representation/decoding such that chromosomes always
stand for feasible individuals.

It is obvious that options 3, 4 and 5 are problem dependent. In a given prob-
lem context they might provide a powerful algorithm, but only little can be
said in general about handling constraints this way. Options number 1 and 2
are problem independent, but it is clear that the first one leads to a very in-
efficient algorithm. Penalizing infeasible individuals/chromosomes has many
advantages. First of all, if it is applied to all constraints then minimizing the
total penalty is the ‘only’ thing to be done. In other words, it transforms
a COP/CSP into an FOP. Considering that EAs have a ‘basic instinct’ to
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optimize, this is a very natural choice. It is also very transparent. Penalties
can be defined independently for each constraint and the total penalty of a
chromosome can be the weighted sum of these local penalties. Using weights
also allows the user to distinguish between difficult (important) and easy
(less important) constraints by giving them a relatively high, respectively
low weight. There are, of course, also disadvantages of using penalties. First
of all, packing all knowledge on violated constraints into a single number
causes a loss of information. Besides, if one is willing to distinguish between
constraints, it can be difficult to determine appropriate weights without sub-
stantial insight in the problem. Finally, this approach is said not to work in
case of sparse problems with only a few solutions [40].

2 Determining penalties

Let us summerize the properties of penalty based constraint handling in EAs:
1. Conceptually simple, transparent,
2. Problem independent,
3. Reduces problem to ‘simple’ optimization,
4. Allows user to tune on his/her preferences by weights,
5. Loss of information by packing everything in a single number,
6. Might require knowledge about the problem (if weights are used),
7. Said not to work well for sparse problems.

Looking carefully at the advantages (items 1 to 4) and disadvantages (5 to
7) of penalty based constraint handling discloses that using appropriate pen-
alties is crucial for the success of this approach. Namely, if the constraints
that are more difficult to satisfy have a relatively high weight, then satisfy-
ing them gives a relatively high reward to the algorithm. Thus, the EA will
be ‘more motivated’ to satisfy these constraints. For a good performance
it is thus essential that the weights reflect the hardness of constraints prop-
erly. This causes two difficulties. First, determining the relative hardness
of constraints, and thereby the appropriate weights, requires domain know-
ledge. Second, the definition of appropriate weights can be problem solver
dependent — a constraint that is hard for method A can be easy for method



B and vice versa. A natural way to handle these problems is to let the prob-
lem solver determine the penalties. In case of evolutionary algorithms, this
amounts to having the EA determining its own fitness function.

Our first efforts in this direction have been reported in [13], followed
by [14, 15]. This approach, called ‘learning penalty functions’ is based on
adjusting the weights of constraints in an off-line fashion, i.e. after finishing
a run with an EA on a given problem.

Off-line weight update mechanism
set initial weights (thus fitness function f)
for z test runs do
run the GA with this f
redefine f after termination
end for

Figure 1: Off-line weight update mechanism

Redefining the fitness function happens by raising the weights of those

constraints that are violated by the best individual at termination (thus only
in case of unsuccessful runs). Experiments on the so-called Zebra puzzle
compare the number of successful runs (out of 100) with and without the
learning feature mentioned above. The results turn out to depend on the
applied crossover operator, but typically the performance is doubled by using
this learning mechanism (in case of one negative outlier the performance does
not change, in case of one positive outlier the performance increases by a
factor of 6). Inspection of the weights after the whole series of 100 runs with
learning exhibits that the weights are to a great extent independent from the
applied crossover operator and the initial values of the weights. In Figure 2
we reproduce the curves from [15] showing these outcomes.
These curves show that the learning mechanism is robust, that is insensitive
to the specific algorithm setup. This supports the conclusion that the weights
learned reflect properties of the problem itself, and are not artifacts of the
algorithm or the experimentation.

Subsequent work has been based on the insight that (evolutionary) search
is a dynamic process passing different phases. Even though these phases
cannot be crisply distinguished, it is widely acknowledged that population
dynamics and the corresponding (near) optimal algorithm parameter values
are changing during a run. Using the terminology of the beginning of this
section one could say that the definition of what appropriate weights are
may change during problem solving. Adapting the basic idea of letting the
problem solver determine the penalties to this view implies that the weights
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Figure 2: Constraint weights learned on the Zebra puzzle. X-axis: con-
straints, Z-axis: weights obtained after 100 runs, Y-axis left figure: different
crossover operators, Y-axis right figure: different weight initialization meth-
ods.

are redefined in an on-line fashion, i.e. during a run of the EA on a given
problem. The resulting mechanism, called Stepwise Adaptation of Weights
(SAW), is presented in Figure 3.

On-line weight update mechanism
set initial weights (thus fitness function f)
while not termination do
for the next T, fitness evaluations do
let the GA go with this f
end for
redefine f and recalculate fitness of individuals
end while

Figure 3: On-line weight adaptation mechanism (SAW)

Redefining the fitness function happens by adding a value Aw to the weights
of those constraints that are violated by the best individual at the end of each
period of T, fitness evaluations. It is clear that the SAW-ing mechanism adds
two new parameters to an EA, the length of the update period 7}, and the
level of weight increase Aw. Extensive tests on graph colouring and 3-SAT
[9, 27] showed that algorithm performance is rather independent from these
values, thus they need not to be fine tuned.

3 SAW-ing evolutionary algorithms

The SAW-ing mechanism has been applied to various constraint satisfaction
problems: graph colouring, satisfiability, and binary CSPs. In this section
we briefly summarize the most important results of these studies.



3.1 Graph colouring

The first application of SAW-ing concerns graph 3-colouring [9, 11, 17]. The
problem of graph 3-colouring is to colour each vertex v € V of a given
undirected graph G = (V, E') with one of three colours so that no two vertices
connected by an edge e € E are coloured with the same colour.

For this problem an order-based EA has been developed where the indi-
viduals are permutations of nodes and a decoder constructs a colouring from
a permutation. As a decoder a simple greedy algorithm is used which colours
a node with the lowest colour! that does not violate constraints and leaves
nodes uncoloured when this is not possible. Somewhat deviating from the
general idea of using the weighted sum of unsatisfied constraints as fitness.
Evaluation of a permutation is based on the number of uncoloured nodes in
the colouring belonging to it. Formally, the function f is defined as:

f(z) = zw x(z,9) 1)

where w; is the penalty (or weight) assigned to node i and

(2,1) = 1 if node z; is left uncoloured because of a constraint violation
XY= 0 otherwise

Initial weights are set at w; = 1, these weights are increased with a step size
of one during updates.

The effect of the SAW-ing mechanism on the EA performance has been
tested using swap mutation as the only search operator, a (1+1) selection
scheme and the SAW mechanism with 7, = 250 and Aw = 1 on graphs
generated with the graph generator written by Joe Culberson? using four
different seeds. The results on equipartite graphs with n = 1000 nodes and
p = 0.010 edge connectivity are summarized in Table 1. The table shows the
results for Falkenauers grouping GA [19, 20], Brélaz’ DSatur algorithm with
backtracking [4], an EA without SAW-ing, a hybrid EA+DSatur algorithm
and the EA with SAW-ing.

These experiments (not all results repeated here) show not only that
a SAW-ing EA highly outperforms the other techniques, but also that the
performance is rather independent from the random seeds. Thus, the SAW
mechanism is not only highly effective, obtaining much better success rates
at lower costs, but also very robust.

LColors are represented by integers.
2Source code is available at ftp://ftp.cs.ualberta.ca/pub/joe/GraphGenerator/
generate.tar.gz.



method | SR | AES

Grouping GA || 0.00 | 300000
EA 0.09 | 261221
DSatur 0.22 | 220033
EA+DSatur | 0.33 | 201354
EA+SAW 0.92 | 113099

Table 1: Success rates (SR) and the average number of evaluations to a solu-
tion (AES) for the Grouping GA, (1+1) EA using SWAP, DSatur with back-
tracking, the hybrid EA+DSatur and the (1+1) SAW-ing EA using SWAP.

A thorough comparison between DSatur with backtracking and a SAW-
ing EA is performed on graph instances with three different topologies (ar-
bitrary 3-colourable, equi-partite 3-colourable and flat 3-colourable graphs),
three different sizes (n = 200,500,1000) and for different values of edge
connectivities around the phase transition where the hardest instances are
located. Globally, the conclusions are that DSatur is better on the ‘easy’
instances (small graphs, the easier topologies and large graphs far from the
phase transition), while the SAW-ing EA is better on the hardest instances.
The SAW-ing EA is often able to find solutions where DSatur does not find
any. As for speed, in general the EA needs fewer steps.

It is very interesting to see the fitness curve of a run of the EA with the
SAW mechanism. Figure 4 shows a run when a solution is found. The left
curve has a higher resolution, displaying the fitness of the best individual
between 0-10000 evaluations, the right curve shows the range 0-80000. The
higher resolution curve shows that within each period the fitness (actually,
the penalty) drops as the EA is making progress and then sharply rises when
the weights are updated, giving the image of a saw.
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Figure 4: Fitness curve for the SAW-ing EA on graph colouring.



3.2 Satisfiability

In a propositional satisfiability problem (SAT) a propositional formula is
given and a truth assignment for its variables is sought for that makes the
formula true. This problem was the first computational task shown to be NP-
hard [5]. Without loss of generality it can be assumed that the given formula
is in conjunctive normal form (CNF), i.e. it is a conjunction of clauses where
a clause is a disjunction of literals. In the 3-SAT version of this problem it is
also assumed that the clauses consist of exactly three literals. In the common
notation, a formula has [ clauses and n variables. Mitchell et al. [35] report
that the phase transition, where the hardest problem instances are located,
is found when | =4.3 - n.

In [10] and [27] several conclusions on SAW-ing EAs for graph colouring
are validated on 3-SAT problems. A straightforward bit-string representation
(one literal — one bit) and fitness function (the weighted sum of unsatisfied
clauses) in a steady-state style form the basis of the algorithm. Similarily
to graph colouring, an EA with population size 1 and mutation only works
best for 3-SAT. The relative insensitivity of the SAW-ing mechanism to the
parameters 7}, and Aw is confirmed, and the particular behavior of the fitness
function can also be observed. Figure 5, after [27], shows the development
of fitness values (the weighted sum of unsatisfied clauses, to be minimized)
during a typical run. Although the oscillations are heavier than for graph
colouring, the general tendency is similar: the fitness curve is increasing first,
then it is suddenly decreasing and hits the optimum level of zero.
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Figure 5: Fitness curve for the SAW-ing EA on 3-SAT.
The paper [10] is concerned with developing a suitable version of the gen-
eral SAW-ing EA and comparing this algorithm with traditional AI heuristics
for solving 3-SAT. The best heuristic algorithms belong to the GenSAT fam-
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ily, such as GSAT proposed by Selman et al. [42], HSAT by Gent and Walsh
[23, 25] that outperformed GSAT, and Frank’s WGSAT that was shown to be
better than HSAT [22, 24]. The comparison of these techniques on Frank’s
set of 1000 satisfiable instances (SeedSetl) as well as on 1000 random in-
stances (SeedSet2) show that the SAW-ing EA is superior. The results are
given in Table 2 after [10].

SeedSet1 SeedSet2
method SR AES SR AES
WGSAT 0.30 | 110507 || 0.53 | 119262

SAW-ing EA w/o fine tuning | 0.37 | 88359 || 0.68 | 97751
SAW-ing EA with fine tuning || 0.48 | 70182 | 0.88 | 73166

Table 2: Comparison between WGSAT and different SAW-ing EAs on 3-SAT.

An interesting aspect of these comparisons is that the family of GenSAT
based methods is actually very similar to an asexual EA with extinctive (1,))
selection strategy (that has been used as SAW-ing EA with fine tuning on
A in the above experiments). Moreover, the WGSAT algorithm looks very
much like a SAW-ing EA, since both methods are using an adaptive weight-
ing mechanism on the clauses to be satisfied. But while WGSAT does an
exhaustive search on each neighbour (in EA terms: on each child that can be
obtained by one bit-flip mutation), the (1,A) EA only generates A offspring
before selecting the next generation (consisting of one single candidate solu-
tion). Despite the similarities in the search mechanisms there are significant
differences in performance between WGSAT and this SAW-ing EA. These
are most probably caused by the fact that the EAs makes locally subop-
timal decisions by not performing exhaustive neighbourhood search, while
WGSAT enumerates all neighbours (mutants) around a given trial solution
and becomes sensitive for local optima. Apparently, the locally suboptimal
choices of the EAs prevent getting stuck in local optima and on the long run
this leads to a better overall performance.

A standard way of circumventing the local optimum problem of hill-
climbers is using them with restarts. In [10] WGSAT is used without restarts
in order to keep the differences between the SAW-ing EA and the WGSAT
algorithm minimal. Fair as this may seem, this can cause suboptimal per-
formance for WGSAT and thus unfair comparisons. In [1] WGSAT with
restarts is considered and the frequency of restarts is fine tuned by numerous
tests. Additionally, a second competitor of the SAW-ing EA is added to the
contest: an evolution strategy, based on a hint of Z. Michalewicz (personal



communication). The basic idea is to make the originally discrete SAT prob-
lem continuous and apply an evolution strategy that has the reputation of a
good EA variant in case of continuous variables.

For an experimental comparison solvable problem instances are used cre-
ated by the generator mkcnf.c by Allen van Gelder®. To ensure that the
problem instances are ‘interesting’ the ratio [ = 4.3 - n is maintained in this
investigation. Tests are performed on three instances for each of the four
different problem sizes (n = 30, 40, 50 and 100). The results obtained by the
fine tuned versions of all three algorithms are summarized in Table 3.

30 40 a0 100
method SR | AES | SR | AES | SR | AES || SR | AES
ES 0.31 | 18725 || 0.45 | 10946 || 0.38 | 18068 || 0.15 | 85670

SAW 1.00 | 34015 || 0.93 | 45272 || 0.85 | 40836 || 0.72 | 50896
WGSAT | 0.99 | 38316 || 0.98 | 31747 || 0.77 | 58386 | 0.36 | 124744

Table 3: Summary of the results for ES, SAW-ing EA and WGSAT

Here again the SAW-ing EA is the best algorithm. On the smaller test
cases the difference with WGSAT is small. For n = 40 WGSAT is slightly
better, but the SAW-ing EA clearly scales up better, that is on the largest
test cases it has a significantly higher SR and lower AES than WGSAT.

3.3 Random binary CSPs

A binary constraint satisfaction problem is a CSP where each constraint
is binary, that is concerns exactly two variables. Restricting a study to
binary CSPs does not lead to loss of generality, because every CSP can be
equivalently transformed into a binary CSP [44]. Binary CSPs have been
the subject of research by many others, among which Smith [43] played an
important role by trying to estimate the difficulty of CSP instances using
four parameters:

1. the number of variables,
2. the domain sizes of these variables,
3. the constraint density of the given problem and

4. the tightness of the constraints.

3File available at ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/
contributed/UCSC/instances
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Constraint density is defined as the probability that a constraint exists given
two variables; this is a feature of the problem as a whole. Constraint tightness
is a measure defined for each individual constraint, being the probability that
two values for the variables are in a conflict. Fixing the number of variables
and the domain size, the constraint density and the average constraint tight-
ness largely determine the hardness of the problem instances. In Figure 6 we
show the landscape of solvability exhibiting the theoretically prediced prob-
ability (Z-axis) that an instance has a solution as a function of the constraint
density (X-axis) and constraint tightness (Y-axis). In this landscape three
different areas can be distinguished. First, the high plateau belonging to low
density and tightness values, where the probability of finding a solution is
one. Second, the low plateau belonging to high density and tightness values,
where the probability of finding a solution is zero. Between these two parts
there is a third area of phase transition called the mushy region [43], where
it is very hard to predict if a particular instance does or does not have a
solution.

Figure 6: Landscape of solvability as predicted theoretically.

For the experiments on binary CSPs and SAW-ing, a problem instance
generator called RandomCsp* has been build loosely based G. Dozier’s work.
The generator is parameterized using the four parameters discussed above.
Two series of experiments have been done, an extensive comparison between
three adaptive EAs on 25 different density and tightness combinations, and
an experiment where only the number of variables is varied to find out the
scale-up behaviour of the two best algorithms from the previous experiment.

4 Available at http://www.wi.leidenuniv.nl/"~jvhemert/csp-ea/
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(density,tightness)
(0.9,0.3) (0.5,0.5) (0.3,0.7) (0.1,0.9)
method || SR | AES | SR | AES | SR | AES | SR | AES

MID 1.00 | 8136 || 0.90 | 26792 | 0.52 | 32412 || 0.96 | 2923
SAW 1.00 | 3848 || 0.74 | 10722 || 0.23 | 21281 || 0.64 | 1159

Table 4: Comparison of MID and SAW. Showing the results for parameter
settings that resulted in the biggest difference in performance.

The three methods participating in the first experiment are the coevolution-
ary GA applied to constraint satisfaction (CCS) [37, 38, 39], the microgenetic
method (MID) [3, 6, 7] and the SAW-ing method. The SAW-ing EA used
here [12, 28] is the same as the best found in the investigation on graph
colouring, using order-based representation with a simple greedy decoder to
assign values to variables, a population size of one and one genetic mutation
operator that swaps two variables.

For the first series of experiments the number of variables and the domain
size of each variable are fixed at 15. Both the density and the tightness values
are ranged over {0.1,0.3,0.5,0.7,0.9}, resulting in 25 combinations and for
each of these combinations 25 instances are generated randomly for the tests.
Each algorithm is ran on each instance 10 times and the average success rate
and the corresponding AES are recorded for each combination. The success
rate results for both MID and SAW show a landscape very similar to the
theoretically estimated landscape of solvability. The success rates for CCS
drop far sooner than for the other two methods. By the time MID and SAW
first have a SR lower than one, CCS is already at SR=0, i.e. not finding
any solutions. In Table 4 we reproduce the most interesting results from
this experiment, leaving out CCS and showing only the density-tightness
combinations from the mushy region. For other combinations MID and SAW
almost had the same performance. The results indicate that MID finds more
solutions in this region, but SAW is always faster, sometimes even two and
a half times as fast as MID.

The second experiment consists of a scale-up test comparing MID and
SAW. By fixing the domain size (15), density (0.3) and tightness (0.3) values
and varying the number of variables (n) from 10 to 40 with a step size of 5, the
variance of performance as a function of the problem size can be observed.
Figure 7 exhibits the AES results numerically (left) as well as graphically
(right). Let us note that the corresponding success rates are constantly 1.0
for for both algorithms. These results show that SAW scales up much better
than MID up to n = 35, but for n = 40 MID is faster, beating SAW by
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Figure 7: AES results for the scale-up tests of MID and SAW. The density
and tightness are set to 0.3 and the domain size of each variable to 15.

almost 1500 fitness evaluations.

Recall the particular behavior of the fitness curves of the SAW-ing EA
on graph colouring (Figure 4) and 3-SAT (Figure 5). We have recorded the
fitness values during a run on a randomly generated CSP (n = m = 15,
d =t = 0.4) and show the result in Figure 8. Here again, the left curve
has a higher resolution, displaying the fitness of the best individual between
0-10000 evaluations, the right curve shows the range 0-100000. The fitness
curves show that SAW repeatedly finds local optima resulting in a sudden
drop op the fitness. Between these fitness drops SAW shows the same image
as it does on the other problems, a periodical rise of the fitness because of
an update of the weights that makes the plot look like a saw.

oooooo

Figure 8: Fitness curves for the SAW-ing EA on binary CSP.
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4 Related work

The basic idea behind SAW-ing is the re-definition of the function to be
optimized, triggered by observed failure in optimizing the current function.
The freedom to do so comes from the nature of the objective function repres-
enting a CSP. Namely, the objective function must have the property that an
optimal function value implies that no constraints are violated. Obviously,
there are many functions satisfying this property and as long as this property
holds the user is free to choose different variants. It is interesting to note
that besides EAs based on penalties other heuristic techniques use a similar
idea to solve CSPs by an estimation of the error in a solution that has to
be minimized. Also the idea of redefining the heuristic estimation function
on-the-fly has been propagated seemingly independently by a number of re-
searchers. In this section we give a brief overview of related work along these
lines.

Morris’ breakout mechanism is a well-known Artificial Intelligence method
in this spirit [36]. The algorithm Morris used in experiments applies an iter-
ative improvement method which proceeds as usual until a local optimum is
reached. The function to be optimized is the weighted sum of nogoods, where
a nogood is a set of prohibited values. When trapped in a local optimum,
the breakout mechanism increases all weights of the current nogoods. When
the algorithm breaks out of the local optimum, it resumes with iterative im-
provement. Good results are obtained on 3-SAT and fair results on graph
colouring for three and four colours. Interesting in this paper is the proof
that an idealized version of the method will eventually always find a solution
for finite CSPs, although this method is not efficient.

In [41], Selman and Kautz describe a GenSAT type method in which
GSAT associates a weight with each clause. The weights of all clauses that
remain unsatisfied at the end of a try are incremented. This very much
resembles the off-line weight update mechanism used in the EA for the Zebra
problem, see section 2. Recently, Frank adapted this mechanism by updating
the weights after each flip instead of after each run [21, 22] and achieved
very good results with this version called WGSAT. This method is based
on the same rationale as our SAW mechanism. Frank envisions his weight
adaptation as repeatedly changing the search heuristics. We see SAW-ing as
a problem independent way to handle constraints, in evolutionary terms a
way to adapt the fitness landscape during the search.

Recent developments in (probabilistic) tabu search, [26], show similarity
with this adaptive spirit too. The memory and learning structures described
by Lgkketangen and Glover embody an adaptive mechanism similar to SAW
in the context of surrogate constraint analysis, [29].
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There are also a number of techniques within the field of evolutionary
computation that modify the definition of fitness during the run. The first
one we know of is that of Hadj-Alouane [2], which utilizes feedback from
the search process. Technically, the method decreases the penalties for the
generation ¢ + 1, if all best individuals in the last k& generations were feas-
ible, and increases penalties, if all best individuals in the last £ generations
were infeasible. If there are some feasible and infeasible individuals as best
individuals in the last & generations, then the weights remain without change.

We have mentioned the microgenetic algorithm with iterative descent
from Dozier et al. [3, 6, 7] in Section 3.3. In this EA a small population is
used together with a system of breakouts & la Morris. A breakout consists of a
nogood (i.e. a pair of values causing a constraint violation) and an associated
weight. The standard fitness being the number of violated constraints is
extended by the weigthed sum of nogoods as an extra penalty for candidate
solutions comnsisting nogoods. The list of nogoods is created and updated
during the run, thus the definition of fitness is also changing during a run.
The weight of a breakout is increased every time the pair of values is involved
in a constraint violation when the algorithm is in a local optimum. This
system is used to make sure the algorithm does not get stuck in local optima.

A different approach to adaptive fitness is represented by coevolutionary
methods. This method, also used in the comparison discussed in Section 3.3,
is based on two populations in an arms race with each other, as proposed by
Paredis [37, 38, 39]. The first population consists of candidate solutions for
the given CSP, while the second one contains the constraints. The fitness
of an individual is determined by a number of encounters with members
of the other population. Individuals are selected for encounters randomly,
but biased by their fitness. An encounter is successful (resulting in better
fitness) for a solution if it satisfies the encountered constraint. In turn, an
encounter is successful for a constraint if the encountered solution cannot
satisfy it. This causes the arms race, where the fitness in both populations
is continuously varying depending on the (randomized) encounters.

5 Concluding remarks

Looking at all research done so far on the SAW-ing method we can highlight
the following findings as most important. First of all that a small population
size, counterintuitive as it may seem, happens to work very well on the prob-
lems that have been tested. Second is the insensitivity that SAW-ing has to
its parameters T, and Aw. This insensitivity has been found in experiments
on graph-colouring and satisfiability. Third, the fitness curves from the three
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problem classes shown in Figures 4, 5, and 8 all share the same features and
exhibit the shape of a saw. This shape comes from alternating periods of
decreasing and increasing fitness values, which are caused by converging to
(local) optima and the periodic increase of weights, respectively.

Let us also make a note on the constraint weights the SAW-ing EA finds.
The plots of the fitness curves suggest that problem solving with the SAW
mechanism happens in two phases. In the first phase the penalty increases
a lot because of the increased weights. This is followed by a phase where
the penalty drops sharply and hits the optimum. A possible explanation for
this behaviour is that in the first phase the EA is learning a good setting
for the weights (that is, an appropriate fitness function) thereby making
the problem ‘easy’. In the second phase the EA is solving the problem,
exploiting the knowledge (appropriate weights) learned in the first phase.
This interpretation of the fitness curves is a plausible hypothesis. However,
suggesting that the EA could learn universally good weights for the given
problem instance would go too far. In the first place, another problem solver
might need other weights to solve the problem. Besides, we have performed
tests on graph colouring and binary CSPs to check this working hypothesis.
In particular, we have applied a SAW-ing EA to a problem instance, thus
learning a setting of the weights, and then applied an EA to the same problem
instance using the learned weights non-adaptively, i.e. keeping them constant
along the evolution. The results showed worse performance than in the first
run when adaptive weights were used. This occurred for both graph colouring
and binary CSPs. This refutes the above hypothesis and suggests that the
SAW mechanism does not work because it enables the problem solver to
discover some hidden, universally good weights. Rather, SAW-ing allows the
EA to shift the focus of search (quasi) continuously, and thus amounting
to implicit problem decomposition that guides the population through the
search space.

Further research on SAW-ing includes other weight update mechanisms
and other application areas for this technique. As for the first issue, also
decreasing weights instead of only increasing them is a straightforward modi-
fictaion that needs to be assessed. Concerning other application areas, cur-
rently we are using genetic programming for data mining where the fitness
(to be minimized) is the weighted sum of misclassified cases from the data
base.
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