@article{HLAH2011, _day = {19}, _month = {04}, abstract = {To facilitate Data Mining and Integration (DMI) processes in a generic way, we investigate a parallel pipeline streaming model. We model a DMI task as a streaming data-flow graph: a directed acyclic graph (DAG) of Processing Elements PEs. The composition mechanism links PEs via data streams, which may be in memory, buffered via disks or inter-computer data-flows. This makes it possible to build arbitrary DAGs with pipelining and both data and task parallelisms, which provides room for performance enhancement. We have applied this approach to a real DMI case in the Life Sciences and implemented a prototype. To demonstrate feasibility of the modelled DMI task and assess the efficiency of the prototype, we have also built a performance evaluation model. The experimental evaluation results show that a linear speedup has been achieved with the increase of the number of distributed computing nodes in this case study.}, author = {L. Han and C.S. Liew and Malcolm P.A. and van Hemert, J.I.}, date-modified = {2016-03-18 12:31:55 +0000}, issn = {0167-8191}, issue = {3}, journal = {Parallel Computing}, keywords = {e-science; data-intensive; data mining; data integration}, pages = {157--171}, publisher = {Elsevier}, title = {A Generic Parallel Processing Model for Facilitating Data Mining and Integration}, url = {http://dx.doi.org/10.1016/j.parco.2011.02.006}, volume = {37}, year = {2011}, bdsk-url-1 = {http://dx.doi.org/10.1016/j.parco.2011.02.006}}