
A new permutation model for solving the graph k-
coloring problem

István Juhos1, Attila Tóth1, Masaru Tezuka2, Phillip Tann3, and
Jano I. van Hemert4

1
 University of Szeged

2
 Hitachi East Japan Solutions, Ltd.

3
 University of Sunderland

4
 National Institute for Mathematics and Computer Science, Amsterdam (CWI)

Abstract
This paper describes a novel representation and ordering model, that is aided by
an evolutionary algorithm, is used in solving the graph k-coloring. A
comparison is made between the new representation and an improved version
of the traditional graph coloring technique DSATUR on an extensive list of
graph k-coloring problem instances with different properties. The results show
that our model outperforms the improved DSATUR on most of the problem
instances.

1 Introduction

The main goal of this paper to present a new effective algorithm for graph k-coloring
problem, which is known to be NP-complete [2]. Furthermore, we perform an
empirical study where we compare with an improved version [3] of the well known
DSATUR [1]. Section 2 provides a brief overview of the graph k-coloring problem
and techniques for solving it. In Section 3 we describe the new representation of the
problem. Section 4 explains how to incorporate the representation into the
evolutionary algorithm. Then, in Section 5 we present the experimental results on the
competition graph database [4]. Finally, we draw conclusion in Section 6.

2 Graph k-coloring

The problem class known as graph k-coloring is defined as follows, given a graph �
V,E� where V = {v1, ..., vn} is a set of vertices and E = {(vi, vj)|vi,vj ∈ V i≠ j} is a set of

edges, where every edge lies between two vertices. In the graph k-coloring problem
every vertex in V should be assigned one of k colors such that no two vertices
connected with an edge in E have the same color. Many algorithms to solve this
problem have been created and studied. Early algorithms are both complete and
sound. However, as it was proven that such algorithms exhibit an exponential effort to
execute when the problem is scaled up, many algorithms studied today use a
stochastic process to guide them towards suboptimal solutions or hopefully towards

an optimal solution. Examples are Tabu-search [5], simulated annealing [6] and
hybrid techniques [7]. One popular approach to dealing with graph k-coloring in
specific is evolutionary computation [8, 9, 10]. Unfortunately, evolutionary
algorithms are not necessarily very good in solving such constraint satisfaction
problems [11] as they may suffer from a number of flaws that keeps them from
reaching optimal solutions [12]. One obstacle that is appropriate for graph k-coloring
is when the problem at hand contains symmetry. There are a number of studies
addressing this problem in general [13][14]. The size of the search space is
determined by the representation of the solutions for the graph k-coloring problem.
When symmetry is not taken under consideration this size is kn. On the other hand,
when symmetry is explicitly removed we may reduce the search space, when n ≥ k to
the size as reported by [15] (Eq. 1).

 () ()n
k

i

k ik
i

k
kn −���

�����−=Π �
=0

1),((1)

The goal of graph k-coloring is to find the minimum number of colors, i.e., the lowest
k that still yields a valid coloring. This k is then called the chromatic number.

3 Representing the Graph k-Coloring Problem

Merge Model (MM)

We represent the colored graph in a table format (See Figure 3) called Merge-Table
(MT). Columns are assigned to the vertices and rows are assigned to the colors. From
point of view of coloring edges are constraints. These are coded as values in the cells
of the MT. One of three possible values must be assigned to each cell in the MT, 0, 1
or X. If the vertex i. is colored with color c then set the cell MT(c,i) to 1. A cell
MT(c,i) is set to zero if the color c assigned to that vertex would violate a constraint,
i.e., an edge exists between this vertex c and another vertex colored with c. If it does
not matter whether we color a vertex i with color c than we set the cell MT(c,i) to X.

We initialize the MT by assigning color i to vertex i for each of the vertices, which
always yields a valid coloring as any graph coloring problem with n vertices can be
colored with n colors. Thus in our MT representation this relates to setting MT(i,i) =
1. Then for every edge (i,j) we set each cell in the MT to 0, thus MT(c,j)=0 if and only
if c=i and (i,j) in E. All the remaining cells of MT are set to X. An example of such a
Merge-Table is in Figure 3, which is initialized from the graph in Figure 1.

Figure 1

If the graph is not a full graph than it might be possible to decrease the number of
colors needed to color the graph. In our representation this amounts to reducing rows
in the MT. To make reduction of rows possible we introduce a merge operation (MO).
This operation merges two rows only when assigning the same color to both vertices
does not create an invalid coloring, i.e., the two vertices are not connected by an edge.
Two rows can not be merged if at least one column exists where one cell is set to 0
and one cell is set to 1. If two rows can be merged than the set of rules in Figure 2
determine how the new row is created.

1 and X = 1 0 and X = 0 X and X = X
1 and 1 = 1 0 and 0 = 0 1 and 0 = row merge is cancelled

Figure 2
Merge rules of Merge Operation and results.

We give an example of a merging operation and reduce two rows in MT “a” in Figure
3 to produce a new table MT “b” . The rows belonging to colors y1 and y5 are
candidate to a merge operation. After merging the two rows are replaced by the row
MO(y1,y5), which means that vertices x1 and x5 are now colored by the same color.

MT “a”

MT “b”

 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5
y1 1 0 0 X X MO(y1,y5) 1 0 0 0 1

y2 0 1 0 0 0 y2 0 1 0 0 0
y3 0 0 1 0 0 y3 0 0 1 0 0
y4 X 0 0 1 0 y4 X 0 0 1 0
y5 X 0 0 0 1

Figure 3
Merge example of two rows. Examination of the MT “ a” clearly
shows that in y5 row, x5 got y5 color (there is 1 in the cell) but x2, x3
or x4 cannot be colored by y5 (meaning of 0 in the cells). Although x1
can be colored by same color as x5 (meaning of X in the cell). MT
“ b” shows merge results, y1 and y5 was merged.

Permutation Merge Model (PMM)

The results, i.e., the coloring of a graph, after two or more merge operations depend
on the order in which these operations were performed. Consider the simple hexagon
as a graph, presented in Figure 4. Now let the sequence of the rows 1,4,2,5,3,6 in the
merge operations and consider the following merging procedure. Take the second row
of sequence 4 and try to merge with previous one 1 the result comes from MO(1,4)
merge operation. Taking next row 2, MO(MO(1,4),2) is cancelled, thus 2 leaves in its
original place. Continue the merging with the next rows 5,3,6 . The allowed merges
are the MO(1,4), MO(2,5) and MO(3,6). This sequence of merge operations results a
3-coloring of the graph. However, if we use the sequence 1,3,5,2,4,6 than we end up

with a 2-coloring of the graph with MO(1,3), MO(MO(1,3),5)), MO(2,4) and
MO(MO(2,4),6) merges.

Initial MT MO Merge order 1,4,2,5,3,6 MO Merge order 1,3,5,2,4,6

1 0 X X X 0 (1,4) 1 0 0 1 0 0 (1,3,5) 1 0 1 0 1 0
0 1 0 X X X (2,5) 0 1 0 0 1 0 (2,4,6) 0 1 0 1 0 1
X 0 1 0 X X (3,6) 0 0 1 0 0 1
X X 0 1 0 X
X X X 0 1 0
0 X X X 0 1

Figure 4
Hexagon graph’s initial Merge-Table is shown on the left side.
Middle table shows the result of the 1,4,2,5,3,6 merge order of the
initial MT and right side is the result of the 1,3,5,2,4,6 merge order.
“ MO” column contains the rows used by Merge-Operation.

Lemma 1.

An arbitrary valid k-coloring of a graph G can be associated to a merged Merge-
Table.

Proof. (constructive)
1. Consider an k × n Merge-Table, where n is the number of the vertices and k is
the number of colors used in the coloring. Let a cell MT(c,i) cell contain 1 if color
c is assigned to vertex i, let it contain 0 if and only if (i,j) is in E and MT(c,j)=1,
otherwise let it contain X.

Proposition 1.
If O is an optimal coloring of the graph G, i.e., it uses the minimal amount of
colors required, than there exists a sequence a merge operations P that reduces
the initial Merge-Table such that O is obtained after applying P.

Proof. (constructive)
Suppose O is an optimal solution. Construct a merged Merge-Table according to
O, this exists because of Lemma 1. Take apart Merge-Table rows that contain
more than one 1 until the number of rows is equal to the number of vertices of G.
Take apart a row i with more than one 1, choose a cell M(i,j) that contains a 1 and
make a new row m. Set MT(m,j)=1 to M(i,j)=X. Set all MT(i,r) cells to X where
vertex r is not connected to vertex i. Fill row m in the usual way, vertex j’ s
neighbors are set to 0 (keep in mind MT(m,j)=1) and the remaining cells to X. By

repeating this until the MT contains n rows will provide the initial MT with one 1
in every row. By reversing the sequence we get the sequence of merge operators P.

To find a minimal coloring for a graph k-coloring problem using the MT table
representation and merge operations we need to find the sequence of merge
operations that leads to that coloring. Thus the problem is a permutation of candidate
reduction steps. We call this the Permutation Merge Model (PMM). The search space
of this model is n! and contains many local optima. We will search in this space by
using an evolutionary algorithm.

4 Evolutionary Algorithm for PMM (PMM-EA)

Representation

The phenotype is a candidate solution of the coloring, which stems from a merge table
after applying a sequence of merge operations. The genotype is a permutation of the
identifiers of MT rows, e.g., 4,3,2,1,5. The initial population contains randomly
generated permutations.

Genetic operators

Mutation is done by swapping two row identifiers in the permutation (an example is
in Figure 5) and the crossover is the order-based crossover for permutations (an
example is in Figure 6) [16].

P1 1 4 3 2 5 6

P1’ 1 5 3 2 4 6

Figure 5
Mutation of a permutation is changing two elements 4 and 5 in the

order.

P1 1 4 3 2 6 5
P2 2 5 4 6 2 1

P1’ 4 1 3 2 6 5
P2’ 2 5 4 6 2 1

Figure 6
Crossover is an order-based crossover; reorder the head according to

the other permutation provided order

Fitness

The k-� defines a measurement that shows how far we are from an optimal coloring,
under the assumption that we know the chromatic number. We should extend this
measurement with a more fine property. The number of zeros in the reduced MT
gives us a degree of how compact the MT is, which we can use to smooth the search
landscape. We use the following function, which needs to be minimized, to evaluate
candidate solutions,

 () () zkPf ⋅−= χ (2)

P: a permutation of the row identifiers
k: remained rows after merge

� : chromatic number
z: number of zeros in the merged MT

Stop condition

The algorithm is stopped if the maximum number of generations of 1000 is reached or
the fitness of an individual is equal to zero, which means it used the same number of
colors as the chromatic number.

The below table shows the applied parameters of evolution algorithm:

mutation probability 0.3
crossover probability 0.8
population size depends on problem 1-100
maximum number of generation 1000

5 Experiments

Reference algorithm

DSATUR from Brèlaz [1] uses a heuristic to dynamically change the ordering of the
vertices and then applies the greedy method to color the vertices. It works as follows,
one vertex with the highest saturation degree, i.e., number of adjacent colors, is
selected and it is assigned the lowest color that still yields a valid coloring. In case of
a tie, the vertex with the highest degree, i.e., number of neighboring vertices, that are
still in the uncolored subgraph is selected. In case another tie a random vertex is
selected. Because of the random tie breaking, DSATUR becomes a stochastic
algorithm and similar for the EA, results of several runs need to be averaged to obtain
useful statistics.

TRICK-DSATUR is an improved version of the DSATUR was introduced in [3],
which first tries to find the largest clique, i.e., a subgraph that is a full graph, in the

graph. It allocates colors for the vertices in each clique. Then, uncolored vertices are
dynamically ordered by saturation of color and subproblems are created as in the
basic DSATUR algorithm The last step is to solve the subproblems in depth-first
manner.

Means of comparison

The basis of the comparison is the computational cost. We measure this as the
number of constraint checks. It means we count that how many times an algorithm
checks if two vertices are connected or not until it reaches either the chromatic
number or maximum running time. The reason for the name "constraint checks" lies
in that edges make constraints in the graph k-coloring problem. Constraint
examination takes the most computational costs in constraint solving algorithms.

Problem instances

The test graphs are from [4], which is a standard competition graph repository. Which
also contains the reference algorithm TRICK-DSATUR.

Results

The PMM-EA model is implemented in C++ and uses the EASEA [17] framework
and EO evolutionary library [18]. We use TRICK-DSATUR code from [4] with an
extension for keeping track of the number of constraint checks. The results are
presented in Figure 7.

When the chromatic number � was found we stopped the TRICK-DSATUR similar to
the evolutionary algorithm. The results are the average of 10 independent runs with a
constant population size and each run uses one of 10 randomly generated seeds for the
random generator. The same set of random seeds was used for each graph. For PMM-
EA the population size was adjusted to match the problem size. The two algorithms
always find the chromatic number in every run.

T-DSATUR PMM-EA Graph |V| |E| � constraint checks constraint checks population size
anna 138 493 11 89,024 23,526 1
david 87 406 11 34,557 12,959 1
homer 561 1629 13 1,484,278 1,233,263 5
huck 74 301 11 25,783 10,732 1
jean 80 254 10 29,939 18,724 2

fpsol2.i.1 496 11654 65 1,311,037 668,504 1
fpsol2.i.2 451 8691 30 1,078,861 1,757,187 6
fpsol2.i.3 425 8688 30 973,200 700,479 2
mulsol.i.1 197 3925 49 292,942 176,316 1
mulsol.i.2 188 3885 31 229,907 116,938 1
mulsol.i.3 184 3916 31 224,934 118,185 1
mulsol.i.4 185 3946 31 228,474 128,585 1
mulsol.i.5 186 3973 31 232,835 117,443 1
zeroin.i.1 211 4100 49 289,622 304,632 2

zeroin.i.2 211 3541 30 289,191 95,763 1
zeroin.i.3 206 3540 30 277,504 208,941 3

games120 120 638 9 101,070 40,969 1
miles250 128 387 8 76,961 185,460 8
miles500 128 1170 20 89,025 844,256 13
miles750 128 2113 31 136,866 12,383,472 80
miles1000 128 3216 42 462,986 14,803,819 10
miles1500 128 5198 73 404.051 1,487,468 6
queen5_5 25 160 5 8,797 25,184 3
queen6_6 36 290 7 223,804 18,366,697 50
myciel3 11 20 4 798 176 1
myciel4 23 71 5 4,273 829 1
myciel5 47 236 6 22,104 4,318 1
myciel6 95 755 7 117,163 15,104 1
myciel7 191 2360 8 638,536 121,708 2

Figure 7
Comparison PMM-EA with TRICK-DSATUR (T-DSATUR) by

constraint checks. � is the chromatic number.

6 Discussion

We presented a new model for an evolutionary algorithm to tackle the graph k-
coloring problem, which provides success on a set of various problem instances. The
evolutionary algorithm PMM-EA has a better average performance, i.e., is faster, than
TRICK-DSATUR for 20 problem instances out of 29.

PMM-EA has substantial problems when solving queen6.6. The clique finding step of
the TRICK-DSATUR before starting to color the graph eliminates some symmetry of
the search space. Also, TRICK-DSATUR creates a clique of size six, which is close
to the lower bound of number of colors in the optimal coloring of queen6.6. PMM-EA
may be extended with a clique finding method, which may improve its performance
for this and similar graph k-coloring problems.

For a number of problem instances a solution is found using one individual from
PMM-EA. This means the representation of the problem is able to solve these
problem instances without any global search. This is makes the PMM model a
powerful local search operator.

7 Acknowledgement

We would like to thank EVONET Summer School which put us in touch and Professor
JÁNOS CSIRIK, the head of the Department of Informatics in University of Szeged for
the valuable advises.

8 References

[1] D. Brèlaz. New methods to color the vertices of a graph. Communications of the ACM,
22(4):251--256, 1979.

[2] Cheeseman, P., B. Kenefsky, andW. Taylor (1991). Where the really hard problems are.
In J. Mylopoulos and R. Reiter (Eds.), Proceedings of 12th International Joint Conference
on AI (IJCAI-91),Volume 1, pp. 331–337. Morgan Kauffman.

[3] A. Mehrotra and MA Trick, A Column Generation Approach for Graph Coloring,
INFORMS Journal on Computing, 8:344-354, 1996.

[4] Michael Trick: Network Resources for Coloring Graphs,
http://mat.gsia.cmu.edu/COLOR/color.html , Last revision: November 3, 1994

[5] A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing,
39:345–351, 1987.

[6] Johnson, D. S., C. R. Aragon, L. A. McGeoch, and C. Schevon (1991, May-June).
optimization by simulated annealing: An experimental evaluation; part II, graph coloring
and number partitioning. Operational Research 39(3), 378–406.

[7] P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of
Combinatorial Optimization, 1998.

[8] J.I. van Hemert. Application of Evolutionary Computation to Constraint Satisfaction and
Data Mining. PhD thesis, Leiden University, 2002.

[9] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring with adaptive
evolutionary algorithms. Journal of Heuristics, 4(1):25–46, 1998.

[10] E. Falkenauer. Genetic Algorithms and Grouping Problems. John Wiley & Son Ltd.,
1998.

[11] J.I. van Hemert. Comparing classical methods for solving binary constraint satisfaction
problems with state of the art evolutionary computation. In Stefano Cagnoni, Jens
Gottlieb, Emma Hart, Martin Middendorf, and Günther Raidl, editors, Applications of
Evolutionary Computing, Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP,
EvoSTim, volume 2279 of lncs, pages 81–90, Kinsale, Ireland, 3–4 April 2002. Springer-
Verlag.

[12] J.I. van Hemert and T. Bäck. Measuring the searched space to guide efficiency: The
principle and evidence on constraint satisfaction. In J.J. Merelo, A. Panagiotis, H.-G.
Beyer, Jose-Luis Fernandez-Villacã nas, and Hans-Paul Schwefel, editors, Proceedings of
the 7th International Conference on Parallel Problem Solving from Nature, number 2439
in lncs, pages 23–32, Berlin, 2002. Springer.

[13] Clarissa Van Hoyweghen, Bart Naudts, and David E. Goldberg. Spin-flip symmetry and
synchronization. Evolutionary Computation, 10(4):317–344, 2002.

[14] Anna Marino and Robert I. Damper. Breaking the symmetry of the graph colouring
problem with genetic algorithms. In Darrell Whitley, editor, Late Breaking Papers at the
2000 Genetic and Evolutionary Computation Conference, pages 240–245, Las Vegas,
Nevada, usa, 8 July 2000.

[15] Even, S. (1973). Algorithmic Combinatorics. Collier-Macmillan.
[16] Michalewicz, Z. Genetic agorithms + data structures = evolution programs,

Springer-Verlag, 219.
[17] "Take it EASEA," Parallel Problem Solving from Nature VI, vol 1917, Springer pp 891-

901, Paris, September 2000.
[18] Maarten Keijzer, Juan J. Merelo Guervós, Gustavo Romero, Marc Schoenauer: Evolving

Objects: A General Purpose Evolutionary Computation Library. Artificial Evolution
2001: 231-244

