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Abstract 
This paper describes a novel representation and ordering model, that is aided by 
an evolutionary algorithm, is used in solving the graph k-coloring. A 
comparison is made between the new representation and an improved version 
of the traditional graph coloring technique DSATUR on an extensive list of 
graph k-coloring problem instances with different properties. The results show 
that our model outperforms the improved DSATUR on most of the problem 
instances. 

1 Introduction 

The main goal of this paper to present a new effective algorithm for graph k-coloring 
problem, which is known to be NP-complete [2]. Furthermore, we perform an 
empirical study where we compare with an improved version [3] of the well known 
DSATUR [1]. Section 2 provides a brief overview of the graph k-coloring problem 
and techniques for solving it. In Section 3 we describe the new representation of the 
problem. Section 4 explains how to incorporate the representation into the 
evolutionary algorithm. Then, in Section 5 we present the experimental results on the 
competition graph database [4]. Finally, we draw conclusion in Section 6. 

2 Graph k-coloring 

The problem class known as graph k-coloring is defined as follows, given a graph �
V,E�  where V = {v1, ..., vn} is a set of vertices and E = {(vi, vj)|vi,vj ∈ V i≠ j} is a set of 

edges, where every edge lies between two vertices. In the graph k-coloring problem 
every vertex in V should be assigned one of k colors such that no two vertices 
connected with an edge in E have the same color. Many algorithms to solve this 
problem have been created and studied. Early algorithms are both complete and 
sound. However, as it was proven that such algorithms exhibit an exponential effort to 
execute when the problem is scaled up, many algorithms studied today use a 
stochastic process to guide them towards suboptimal solutions or hopefully towards 



 

an optimal solution. Examples are Tabu-search [5], simulated annealing [6] and 
hybrid techniques [7]. One popular approach to dealing with graph k-coloring in 
specific is evolutionary computation [8, 9, 10]. Unfortunately, evolutionary 
algorithms are not necessarily very good in solving such constraint satisfaction 
problems [11] as they may suffer from a number of flaws that keeps them from 
reaching optimal solutions [12]. One obstacle that is appropriate for graph k-coloring 
is when the problem at hand contains symmetry. There are a number of studies 
addressing this problem in general [13][14]. The size of the search space is 
determined by the representation of the solutions for the graph k-coloring problem. 
When symmetry is not taken under consideration this size is kn. On the other hand, 
when symmetry is explicitly removed we may reduce the search space, when n ≥ k to 
the size as reported by [15] (Eq. 1). 
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The goal of graph k-coloring is to find the minimum number of colors, i.e., the lowest 
k that still yields a valid coloring. This k is then called the chromatic number. 

3 Representing the Graph k-Coloring Problem 

Merge Model (MM) 

We represent the colored graph in a table format (See Figure 3) called Merge-Table 
(MT). Columns are assigned to the vertices and rows are assigned to the colors. From 
point of view of coloring edges are constraints. These are coded as values in the cells 
of the MT. One of three possible values must be assigned to each cell in the MT, 0, 1 
or X. If the vertex i. is colored with color c then set the cell MT(c,i) to 1. A cell 
MT(c,i) is set to zero if the color c assigned to that vertex would violate a constraint, 
i.e., an edge exists between this vertex c and another vertex colored with c. If it does 
not matter whether we color a vertex i with color c than we set the cell MT(c,i) to X. 
 
We initialize the MT by assigning color i to vertex i for each of the vertices, which 
always yields a valid coloring as any graph coloring problem with n vertices can be 
colored with n colors. Thus in our MT representation this relates to setting MT(i,i) = 
1. Then for every edge (i,j) we set each cell in the MT to 0, thus MT(c,j)=0 if and only 
if c=i and (i,j) in E. All the remaining cells of MT are set to X.  An example of such a 
Merge-Table is in Figure 3, which is initialized from the graph in Figure 1. 

 
Figure 1 

 



If the graph is not a full graph than it might be possible to decrease the number of 
colors needed to color the graph. In our representation this amounts to reducing rows 
in the MT. To make reduction of rows possible we introduce a merge operation (MO). 
This operation merges two rows only when assigning the same color to both vertices 
does not create an invalid coloring, i.e., the two vertices are not connected by an edge. 
Two rows can not be merged if at least one column exists where one cell is set to 0 
and one cell is set to 1. If two rows can be merged than the set of rules in Figure 2 
determine how the new row is created. 

 
1 and X = 1 0 and X = 0 X and X = X 
1 and 1 = 1 0 and 0 = 0 1 and 0 = row merge is cancelled 

Figure 2 
Merge rules of Merge Operation and results. 

We give an example of a merging operation and reduce two rows in MT “a”  in Figure 
3 to produce a new table MT “b” . The rows belonging to colors y1 and y5 are 
candidate to a merge operation. After merging the two rows are replaced by the row 
MO(y1,y5), which means that vertices x1 and x5 are now colored by the same color. 

 
  

MT “a”  
     

MT “b”  
  

 x1 x2 x3 x4 x5   x1 x2 x3 x4 x5 
y1 1 0 0 X X  MO(y1,y5) 1 0 0 0 1 

y2 0 1 0 0 0  y2 0 1 0 0 0 
y3 0 0 1 0 0  y3 0 0 1 0 0 
y4 X 0 0 1 0  y4 X 0 0 1 0 
y5 X 0 0 0 1        

Figure 3 
Merge example of two rows. Examination of the MT “ a”  clearly 
shows that in y5 row, x5 got y5 color (there is 1 in the cell) but x2, x3 
or x4 cannot be colored by y5 (meaning of 0 in the cells).  Although x1 
can be colored by same color as x5 (meaning of X in the cell). MT 
“ b”  shows merge results, y1 and y5 was merged. 

Permutation Merge Model (PMM) 

The results, i.e., the coloring of a graph, after two or more merge operations depend 
on the order in which these operations were performed. Consider the simple hexagon 
as a graph, presented in Figure 4. Now let the sequence of the rows 1,4,2,5,3,6 in the 
merge operations and consider the following merging procedure. Take the second row 
of sequence 4 and try to merge with previous one 1 the result comes from MO(1,4) 
merge operation. Taking next row 2, MO(MO(1,4),2) is cancelled, thus 2 leaves in its 
original place. Continue the merging with the next rows 5,3,6 . The allowed merges 
are the MO(1,4), MO(2,5) and MO(3,6). This sequence of merge operations results a 
3-coloring of the graph. However, if we use the sequence 1,3,5,2,4,6 than we end up 



 

with a 2-coloring of the graph with MO(1,3), MO(MO(1,3),5)), MO(2,4) and 
MO(MO(2,4),6) merges. 
 

Initial MT MO Merge order 1,4,2,5,3,6 MO Merge order 1,3,5,2,4,6 

1 0 X X X 0 (1,4) 1 0 0 1 0 0 (1,3,5) 1 0 1 0 1 0 
0 1 0 X X X (2,5) 0 1 0 0 1 0 (2,4,6) 0 1 0 1 0 1 
X 0 1 0 X X (3,6) 0 0 1 0 0 1        
X X 0 1 0 X               
X X X 0 1 0               
0 X X X 0 1               

 

Figure 4 
Hexagon graph’s initial Merge-Table is shown on the left side. 
Middle table shows the result of the 1,4,2,5,3,6 merge order of the 
initial MT and right side is the result of the 1,3,5,2,4,6 merge order. 
“ MO”  column contains the rows used by Merge-Operation. 

 
Lemma 1. 

An arbitrary valid k-coloring of a graph G can be associated to a merged Merge-
Table. 
 

Proof. (constructive) 
1. Consider an k × n Merge-Table, where n is the number of the vertices and k is 
the number of colors used in the coloring. Let a cell MT(c,i) cell contain 1 if color 
c is assigned to vertex i, let it contain 0 if and only if (i,j) is in E and MT(c,j)=1, 
otherwise let it contain X. 
 

Proposition 1. 
If O is an optimal coloring of the graph G, i.e., it uses the minimal amount of 
colors required, than there exists a sequence a merge operations P that reduces 
the initial Merge-Table such that O is obtained after applying P. 
 

Proof. (constructive) 
Suppose O is an optimal solution. Construct a merged Merge-Table according to 
O, this exists because of Lemma 1. Take apart Merge-Table rows that contain 
more than one 1 until the number of rows is equal to the number of vertices of G. 
Take apart a row i with more than one 1, choose a cell M(i,j) that contains a 1 and 
make a new row m. Set MT(m,j)=1 to M(i,j)=X. Set all MT(i,r) cells to X where 
vertex r is not connected to vertex i. Fill row m in the usual way, vertex j’ s 
neighbors are set to 0 (keep in mind MT(m,j)=1) and the remaining cells to X. By 



repeating this until the MT contains n rows will provide the initial MT with one 1 
in every row. By reversing the sequence we get the sequence of merge operators P. 
 
 

To find a minimal coloring for a graph k-coloring problem using the MT table 
representation and merge operations we need to find the sequence of merge 
operations that leads to that coloring. Thus the problem is a permutation of candidate 
reduction steps. We call this the Permutation Merge Model (PMM). The search space 
of this model is n! and contains many local optima. We will search in this space by 
using an evolutionary algorithm.  

4 Evolutionary Algorithm for PMM (PMM-EA) 

Representation 

The phenotype is a candidate solution of the coloring, which stems from a merge table 
after applying a sequence of merge operations. The genotype is a permutation of the 
identifiers of MT rows, e.g., 4,3,2,1,5. The initial population contains randomly 
generated permutations.  

Genetic operators 

Mutation is done by swapping two row identifiers in the permutation (an example is 
in Figure 5) and the crossover is the order-based crossover for permutations (an 
example is in Figure 6) [16]. 

 
P1 1 4 3 2 5 6 

 
P1’  1 5 3 2 4 6 

Figure 5 
Mutation of a permutation is changing two elements 4 and 5 in the 

order. 
 

P1 1 4 3 2 6 5 
P2 2 5 4 6 2 1 
       

P1’  4 1 3 2 6 5 
P2’  2 5 4 6 2 1 

Figure 6 
Crossover is an order-based crossover; reorder the head according to 

the other permutation provided order 



 

Fitness 

The k-�  defines a measurement that shows how far we are from an optimal coloring, 
under the assumption that we know the chromatic number. We should extend this 
measurement with a more fine property. The number of zeros in the reduced MT 
gives us a degree of how compact the MT is, which we can use to smooth the search 
landscape. We use the following function, which needs to be minimized, to evaluate 
candidate solutions, 

 ( ) ( ) zkPf ⋅−= χ  (2) 
 

P: a permutation of the row identifiers 
k: remained rows after merge 

� : chromatic number 
z: number of zeros in the merged MT 

Stop condition  

The algorithm is stopped if the maximum number of generations of 1000 is reached or 
the fitness of an individual is equal to zero, which means it used the same number of 
colors as the chromatic number. 
 
The below table shows the applied parameters of evolution algorithm: 

 
mutation probability 0.3 
crossover probability 0.8 
population size depends on problem 1-100 
maximum number of generation 1000 

5 Experiments 

Reference algorithm 

DSATUR from Brèlaz [1] uses a heuristic to dynamically change the ordering of the 
vertices and then applies the greedy method to color the vertices. It works as follows, 
one vertex with the highest saturation degree, i.e., number of adjacent colors, is 
selected and it is assigned the lowest color that still yields a valid coloring. In case of 
a tie, the vertex with the highest degree, i.e., number of neighboring vertices, that are 
still in the uncolored subgraph is selected. In case another tie a random vertex is 
selected. Because of the random tie breaking, DSATUR becomes a stochastic 
algorithm and similar for the EA, results of several runs need to be averaged to obtain 
useful statistics. 
 
TRICK-DSATUR is an improved version of the DSATUR was introduced in [3], 
which first tries to find the largest clique, i.e., a subgraph that is a full graph, in the 



graph. It allocates colors for the vertices in each clique. Then, uncolored vertices are 
dynamically ordered by saturation of color and subproblems are created as in the 
basic DSATUR algorithm The last step is to solve the subproblems in depth-first 
manner. 

Means of comparison 

The basis of the comparison is the computational cost.  We measure this as the 
number of constraint checks.  It means we count that how many times an algorithm 
checks if two vertices are connected or not until it reaches either the chromatic 
number or maximum running time.  The reason for the name "constraint checks" lies 
in that edges make constraints in the graph k-coloring problem. Constraint 
examination takes the most computational costs in constraint solving algorithms. 

Problem instances 

The test graphs are from [4], which is a standard competition graph repository. Which 
also contains the reference algorithm TRICK-DSATUR.  

Results 

The PMM-EA model is implemented in C++ and uses the EASEA [17] framework 
and EO evolutionary library [18]. We use TRICK-DSATUR code from [4] with an 
extension for keeping track of the number of constraint checks. The results are 
presented in Figure 7. 
 
When the chromatic number �  was found we stopped the TRICK-DSATUR similar to 
the evolutionary algorithm. The results are the average of 10 independent runs with a 
constant population size and each run uses one of 10 randomly generated seeds for the 
random generator. The same set of random seeds was used for each graph. For PMM-
EA the population size was adjusted to match the problem size. The two algorithms 
always find the chromatic number in every run. 
 

T-DSATUR PMM-EA Graph |V| |E| �  constraint checks constraint checks population size 
anna 138 493 11 89,024 23,526 1 
david 87 406 11 34,557 12,959 1 
homer 561 1629 13 1,484,278 1,233,263 5 
huck 74 301 11 25,783 10,732 1 
jean 80 254 10 29,939 18,724 2 

fpsol2.i.1 496 11654 65 1,311,037 668,504 1 
fpsol2.i.2 451 8691 30 1,078,861 1,757,187 6 
fpsol2.i.3 425 8688 30 973,200 700,479 2 
mulsol.i.1 197 3925 49 292,942 176,316 1 
mulsol.i.2 188 3885 31 229,907 116,938 1 
mulsol.i.3 184 3916 31 224,934 118,185 1 
mulsol.i.4 185 3946 31 228,474 128,585 1 
mulsol.i.5 186 3973 31 232,835 117,443 1 
zeroin.i.1 211 4100 49 289,622 304,632 2 



 

zeroin.i.2 211 3541 30 289,191 95,763 1 
zeroin.i.3 206 3540 30 277,504 208,941 3 

games120 120 638 9 101,070 40,969 1 
miles250 128 387 8 76,961 185,460 8 
miles500 128 1170 20 89,025 844,256 13 
miles750 128 2113 31 136,866 12,383,472 80 
miles1000 128 3216 42 462,986 14,803,819 10 
miles1500 128 5198 73 404.051 1,487,468 6 
queen5_5 25 160 5 8,797 25,184 3 
queen6_6 36 290 7 223,804 18,366,697 50 
myciel3 11 20 4 798 176 1 
myciel4 23 71 5 4,273 829 1 
myciel5 47 236 6 22,104 4,318 1 
myciel6 95 755 7 117,163 15,104 1 
myciel7 191 2360 8 638,536 121,708 2 

Figure 7  
Comparison PMM-EA with TRICK-DSATUR (T-DSATUR) by 

constraint checks. �  is the chromatic number. 

6 Discussion 

We presented a new model for an evolutionary algorithm to tackle the graph k-
coloring problem, which provides success on a set of various problem instances. The 
evolutionary algorithm PMM-EA has a better average performance, i.e., is faster, than 
TRICK-DSATUR for 20 problem instances out of 29. 
 
PMM-EA has substantial problems when solving queen6.6. The clique finding step of 
the TRICK-DSATUR before starting to color the graph eliminates some symmetry of 
the search space. Also, TRICK-DSATUR creates a clique of size six, which is close 
to the lower bound of number of colors in the optimal coloring of queen6.6. PMM-EA 
may be extended with a clique finding method, which may improve its performance 
for this and similar graph k-coloring problems. 
 
For a number of problem instances a solution is found using one individual from 
PMM-EA. This means the representation of the problem is able to solve these 
problem instances without any global search. This is makes the PMM model a 
powerful local search operator.  
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