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Abstract
LOFAR, a new radio telescope, will be designed to observe with up to 8 independent beams, thus
allowing several simultaneous observations. Scheduling of multiple observations parallel in time, each
having their own constraints, requires a more intelligent and flexible scheduling function then operated
before.

In support of the LOFAR radio telescope project, and in co-operation with Leiden University, Fokker
Space has started a study to investigate the suitability of the use of evolutionary algorithms applied to
complex scheduling problems. After a positive familiarisation phase, we now examine the potential
use of evolutionary algorithms via a demonstration project. Results of the familiarisation phase, and
the first results of the demonstration project are presented in this paper.

1. Introduction
The Fokker Space company has been active in
space telescopes (e.g. ANS, IRAS, ISO, SAX)
since 1968. Recent participation in telescope
projects including VLT Delay Lines and
LOFAR, both earth based telescopes, in which
Fokker Space can re-use its gained
engineering capabilities and technical
expertise from space projects.

The role of Fokker Space in the current phase
of the LOFAR project is providing system
engineering support (including Reliability,
Availability, Maintainability, Safety) and the
preliminary development of the LOFAR
Specification and Scheduling Segment.

Existing telescope schedule engines do not
provide algorithms that deal with the intrinsic
complexity of the LOFAR concept in relation to
constraints imposed by simultaneous
observations and complex resource sharing.

Within the internal Fokker Space R&D
programme, a series of studies have started to
investigate the suitability of the use of
evolutionary algorithms applied to complex
scheduling problems. Here we report on the
results of the familiarisation phase that was
recently finalised.

2. The scheduling problem in
LOFAR

2.1 Highlights of LOFAR
LOFAR’s goal is to open up a new, high
resolution window on the lowest region of the
electromagnetic spectrum (10-220 MHz) that is
accessible from the earth [1]. The design
highlights currently envisaged offer future
users an instrument that is much more flexible
than traditional radio telescopes have been [2].
The main characteristics are:

- Independently steerable multiple electronic
beams.

- The ability to rapidly point to any position
in the accessible sky.

- To process the high data rate on a
processor dedicated to such tasks (and
possibly outside the capability of
conventional processing techniques and
generally available hardware).

Some relevant background information on
LOFAR is provided in the next sections.
Relevant documentation can be found at
www.lofar.org.



2.2 Science with LOFAR
Currently, the following key science areas are
expected to be supported [1]:

1. The High Redshift Universe: Low
frequency radio observations have proven to
be an efficient means of detecting high red
shift radio galaxies, which in turn can be used
to probe the onset of structure formation in the
Universe. Because these sources are rare,
detecting them will necessitate large-scale
surveys of the entire sky accessible to LOFAR.

2. The Epoch of Reionization: The collapse
of the first structures in the Universe should
have produced 21 cm radiation from the
surrounding neutral hydrogen. Today, highly
red shifted in LOFAR’s observing range, this
emission, if it can be detected, can be used to
map the first structures to form in the Universe.

3. Mapping the 3-Dimensional Galactic
Cosmic Ray Distribution: At low frequencies
H II regions become opaque. If the H II region
is at a known distance, the intensity of non-
thermal emission in front of it can be compared
with that along nearby lines of sight to infer the
synchrotron emissivity toward the H II region.
LOFAR has the potential to apply this method
to hundreds to thousands of H II regions in the
Galaxy. If successful, the result would be a 3-D
map of the cosmic-ray emission in the Galaxy.

4. Bursting and Transient Phenomena: the
flexibility and reconfigurability of LOFAR offers
great potential for the study of variable
phenomena. The unknown nature of many of
these effects require maximum flexibility of the
instrument, to ensure it can be used efficiently.

5. Active and Passive Solar and
Ionospheric Applications: Astronomical and
terrestrial sources of radiation not under
LOFAR control can be exploited to probe the
ionosphere or the environment of the Sun on
short time scales and fine spatial scales.
Examples include interplanetary scintillation of
radio sources and passive radar from FM
broadcasts. The development of a separate
transmit facility is beyond the current LOFAR
project. If an outside group(s) were to develop
one, it could be combined with LOFAR to
conduct bi-static radar mapping of the solar
corona.

2.3 Observing with LOFAR
LOFAR is designed to measure in a frequency
range of approximately 10-250 MHz. The
frequency range 10-80 MHz is called the low
frequency range, and the range 100-250 MHz
is called the high frequency range.

Observations required to take place in the high
frequency range need to be scheduled at night
because of ionospheric conditions, while the
low-frequency obervations can occur at any
time. It is also not very likely that low-frequency
and high-frequency observations will be
performed at the same time.

2.4 Acquisition stations
Physically, the telescope consists of more than
10.000 antennas spread over an area with a
diameter of more than 300 kilometres.
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Figure-1: An artist impression of a possible
LOFAR configuration in the Netherlands

(courtesy ASTRON)

Antennas are grouped together as substations,
and several substations form one station.
About 25% of all antenna’s will be placed in a
virtual core of about 2 km diameter. All other
antennas are placed within stations (for an
impression see Figure-1) along one of the
spiral arms.

Figure-2: An artist impression of a LOFAR
antenna station in the Netherlands

(courtesy ASTRON)



2.5 Beamforming
Beamforming is the process where the
telescope is configured to “look” into a certain
direction (phased array). In contrast to more
traditional telescopes, where the location of the
object to measure follows immediately from the
orientation of the dish, LOFAR accomplishes
this via hardware and software. The underlying
idea is that signals from celestial objects take
different times to reach the different antennas.

LOFAR allows up to eight beams to be used
simultaneously because of three facts:

- Incoming signals are now processed with
the help of embedded software instead of
analogue electronics.

- Beamforming is done by the digital
processing part.

- A very high-capacity network & processing
capacity will be installed that allows
massive amounts of data to be transported
and processed.

The multi-beam aspect is perhaps the most
remarkable feature of the telescope. However,
all antennas are needed in the process of
beamforming, meaning that if some part of the
system fails, e.g., a station, this will affect all
beams. This will certainly influence
measurements, but does not necessarily yield
worthless data.

2.6 Scheduling
Job scheduling is a difficult task, and this also
holds for telescope scheduling. In general,
scheduling problems are NP-hard (NP = non-
deterministic polynomial, meaning that there
are no known algorithms that can give a
solution to the problem in polynomial time [3].

Obviously, the main goal of telescope
scheduling is to maximise observing efficiency
by maximising the number of high quality
observations, minimising time it takes to
execute observations, minimising wasted
observations, and optimising the use of a
limited resource, the telescope itself. On the
other hand, we would also like the scheduler to
be fair, so non-urgent, but important
observations will not be put off all the time in
favour of more urgent ones.

This is complicated due to the complex
resource sharing in the LOFAR instrument.
Some resources (like antennas) can be shared
by simultaneous observations, but other
resources (such as processing pipelines)
cannot be shared and observations will
compete for their availability.

The software design of LOFAR uses
abstractions called observation types (related
to the kind of observation) and virtual
instruments (an abstraction to capture the
necessary resources for specific purposes).
These abstractions will hide instrument details
from the scientists and will enable flexible
operation of the telescope and future easy-to-
be-implemented new observation types.
Furthermore, as mentioned before, in principle
LOFAR is able to execute up to 8 parallel
observations using its 8 virtual beams.

After some investigation we concluded that
current telescope scheduling systems, such as
SPIKE [4] or SWAS [5], do not include the
functionality and flexibility that is expected to
be required to solve the (parallel) scheduling
problem of LOFAR and therefore, at a very
early stage of the LOFAR project, Fokker
Space, and supported by the Leiden Institute
for Advanced Computer Science, decided to
investigate the possible use of Evolutionary
Algorithms for telescope scheduling within its
internal R&D programme.

3. Evolutionary Algorithms

3.1 Introduction
Nearly all practical scheduling problems can be
described in terms of the job-shop scheduling
problem [6]. This problem can be described as
follows. Consider a manufacturing environment
in which n jobs need to be done on m
machines. Jobs typically require processing on
several machines and for every job there is a
set of constraints on the order in which the
machines can be used as well as a processing
time on each machine. Now the aim is to find
the sequence of jobs on each machine in order
to minimise a given objective function, usually
being the total ‘makespan’, i.e., the time to
finish all jobs.

Solving a job-shop scheduling problem with an
evolutionary algorithm is done by applying
specialised operators that allow for meaningful
crossover and mutation of candidate
schedules. A schedule in this case is a
specification of the use of all machines,
indicating when to do what part of which job on
this machine. Because of the complex nature
of the scheduling problem there is almost
always a need to use heuristics at some level.
Finding these heuristics is in itself a difficult
problem, and is studied among others in the
field of Operations Research.



3.2 Principles of Evolutionary
Algorithms
Evolutionary Algorithms (EA) are a modern
implementation of Darwin’s principle of the-
survival-of-the-fittest. EA’s are computational
models inspired by evolution. These algorithms
encode potential solutions to a specific
problem in a chromosome-like data structure.
Each of these chromosomes represents an
individual. Decoding and evaluating the
chromosome of an individual indicates how
good this potential solution actually is. This is
known as the fitness of an individual. The
group of individuals is called the population.
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Figure-3: A visualisation of an evolutionary
algorithm

At the start of the algorithm a population is set
up. The evolutionary process then decides
which members of the population are most
likely to reproduce, based on the fitness of the
solution they contain. The individuals that
represent a better solution to the target
problem are more likely to reproduce than
those that represent a poor solution.

After reproduction a new population enters the
same process. This process is repeated using
cross-over, mutation and selection, until certain
given constraints are satisfied or until a given
amount of populations have been examined.
Cross-over and mutation principles are further
discussed in Section 4.6.

Whether a problem can be solved using an
evolutionary algorithm, depends on a few basic
factors. It must be possible to determine the
fitness of a solution, and to determine which
solution is close to an acceptable solution.
Evolutionary algorithms assume that
combining two good individuals will probably
create even better offspring.

4. A first prototype of the EA
schedule engine

4.1 Introduction
After studying the theory and principles of EA’s
we decided to build an early and simplified

prototype to demonstrate the EA principles and
to familiarise with them.

Some of the details of the EAs for scheduling
mentioned here are implemented. The concept
of hard constraints and soft constraints or
preferences is used in the implementation of
the scheduling engine. Most others can be
implemented if there is a need for it.

First, we have defined a simple concept for
observation database. The scientist defines a
macro observation, the schedule operator will
work with micro observations. In some cases
they may equal.

4.2 Schedule model
In our simplified telescope schedule model we
specified a macro observation using the
following entry values:

- Macro Id and Observation Type

- Cpu-use

- Start-stop dates & times

- Length, Co-ordinates, Frequency

- Hard constraints (e.g. during night or day;
after another observation)

Macro observations will be split into one or
more micro observations which will have a
fixed duration in time.

The micro observation is specified using:

- Micro Id & Macro Id (Parent)

- Length & Co-ordinates

- After (i.e. relation to other observations)

4.3 Schedule model constraints
The following constraints were implemented in
our schedule model:

- The object must be visible (a simplified
model is used)

- Resource may not exceed maximum value

- All observations are at same frequency or
simultaneous observations

- Needs to be scheduled after another
observation

- Not allowed to follow other observation
immediately

- Needs to be a strict observation (e.g. fixed
in time)

- Needs to be done during day/night



One can think of many other (realistic)
constraints that should or could be
implemented in the final schedule engine.
However, for simplicity, we disregard all of
these here.

4.4 Definition of the Evolutionary
Algorithm
In defining an Evolutionary Algorithm we
specified the following ingredients (Figure 3):

- Chromosome representation (chromosome
& decoder)

- Initialisation

- Fitness function

- Genetic operators (crossover, mutation)

- Selection (parent, survivor)

- Termination criteria

The chromosome is the series of micro
observations. A micro observation is a gene.
The decoder takes up a micro observation and
will put it on the chromosome. Initialisation will
create a pool of individuals necessary to start
the evolutionary process.

First strict observations (e.g. fixed in time
and/or frequency) will be placed. E.g. high
frequency observations will be allocated first in
the blocks reserved for high frequency. Then
repeating observations (e.g. from a survey) will
be placed. Next the other micro observations
will be placed up front as possible. In this
phase constraint satisfaction is not strived for;
this will be achieved by applying the fitness
function.

This fitness function will be applied to all
individuals, or rather to the schedule that is
created from them by the decoder. For every
individual two fitness values will be computed;
the so-called constraint-fitness and the
preference-fitness. Individuals scoring zero
points on the constraint-fitness component
represent valid schedules, and those that also
score high on the preference-fitness
component are the better individuals among
those that are valid.

Note that a high constraint-fitness value
indicates a non-fit individual. Those having low
constraint-fitness are the better solutions,
although still incomplete ones and probably not
totally valid, and a constraint-fitness value of
zero indicates a complete and valid solution.

Note that in our model we use a positive
number to indicate the badness of an
individual.

4.5 Fitness Function

4.5.1 Constraints
If the constraint fitness of an individual, that
represents a possible schedule, is not equal to
zero, it is an invalid solution. However, it can
be repaired by removing some of the
observations. This (interactive) functionality is
not yet implemented in our model.

Implemented constraints in the model are:

- exceeds available amount of resources

- not all observations at same frequency

- execution order violated

- follows earlier observation too soon

- failed to schedule some observations

The (non-)violation of these constraints can be
represented as a vector; the so-called
constraint break (cbreak) vectors which will be
used in the calculations.

4.5.2 Preferences
Implemented preferences in the simulator are:

- high above the horizon

This was done using a very simplified model as
illustrated in the Figure 4 and 5.

observation length

distance to start distance to end

Figure-4: Placing an observation in a specific
scheduling window

preference fitness

dist_to_start = dist_to_end

Figure-5: Preference value



4.5.3 SAW vector
The SAW-vector is introduced to determine the
weights, used for calculating the constraint-
fitness, during the run. SAW stands for
“Stepwise Adaptation of Weights” and is
described in [7].

Since it is not known how severe each
constraint violation should be punished, and
which constraint will be the most violated and
which the least, choosing weights for
punishment is very hard to do. Therefore we
choose to make the SAW-vector part of the
algorithm. The SAW-vector indicates the
weight of punishment per constraint type. This
method avoids having us experiment a lot with
different weight settings for the constraint.
What happens is that during the run the
weights are updated and these should give a
fair impression of the relative impact of every
constraint. This information can be used for
later runs.

4.5.4 Fitness computation
The actual computation of the values of the 2
fitness-components is as follows:

- constraint fitness

Multiply for each individual the SAW-vector
with the individual's cbreak-vector. Note
that an individual that has few constraint
violations has a low constraint fitness.

CF = (c1s1 + c2s2 + c3s3 + c4s4 + c5s5)

- preference fitness

For all observations, except for micro
survey observations, measure the
preference fitness value. The sum of all
these numbers is the preference fitness for
this individual.

PF = sum [obs_length/(dist_to_start –
dist_to_end)+1]

4.6 Operators
In creation of new individuals several operators
are being used. The principles are sketched
below.

4.6.1 Crossover
The crossover (Figure 6) step combines the
chromosome of the two parents into a new
child. When this is done to create a schedule
special attention must be given to this operator
to ensure that the child chromosome
represents a valid permutation of the
observations in the schedule.
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Figure-6: Crossover

4.6.2 Mutation
Mutations introduce some random variations in
the chromosomes. Also for mutations (see
Figure 7) special attention is required to keep
the chromosome a valid permutation.

Figure-7: Mutation

4.7 Selection
The selection mechanisms are used to select
parents or to select survivors. Parent selection
is used to select individuals from the current
population that will act as parents that can
breed and create offspring. Survivor selection
is used to select the offspring that is allowed to
live on, and possibly gets to replace some
individual or individuals in the current
population. This also keeps the population size
within strict bounds.

A steady state approach, replacing only a few
individuals at a re-iteration, is adopted because
it has efficiency benefits over the generational
model which replaces the whole population at
every iteration [8]. Furthermore, we used a
population of size 30.

4.7.1 Parent selection
We use linear ranking selection for parent
selection, and we select two individuals to act
as parents per selection step. Linear ranking
selection is a good method to prevent a very fit
individual from taking over the entire
population



4.7.2 Survivor selection
We use a tournament selection method among
the two offspring and the two worst individuals
in the parent pool to select the two individuals
that make it to the parent pool. These four
individuals are compared against each other,
and the two most fit make it to the parent pool.

4.8 Termination criterion
A decision has to be made as to when the
algorithm should stop. The aim of any EA is to
find a good solution in reasonable time, and if
possible to find the optimal solution. Since it is
not known what the optimal solution is, we will
have to define when a solution is acceptable.

First of all, it seems reasonable to limit the run
time of the algorithm. If no good solution is
found, it may be that the problem should be
relaxed somewhat. The runtime of the
algorithm is related to the number of fitness
evaluations performed, so we defined an upper
limit of 20.000 iterations for this.

4.9 Repairing individuals
If the termination criterion is reached, it might
happen that there is no valid solution, i.e., one
that has a constraint-fitness value equal to
zero. In that case, we can create a valid
schedule by removing observations until all
constraint violations are resolved. Strictly
speaking this also does not yield a valid
solution, because not placing all observations
is also considered to be a constraint violation.
However, individuals that violate this constraint
can still represent schedules that are suited for
execution.

In LOFAR it is foreseen that the scheduling
system not only contains an automatic
scheduling tool, but also an interactive
scheduling tool, allowing the scheduler to
repair or overwrite automatically generated
schedules.

5. Testing

5.1 Test definition
The goal of evaluation is to investigate how
well the EA works, and how the settings of the
different parameters affect the quality of the
schedules produced by the algorithm. Since
there are a lot of parameters, this gives us a lot
of combinations to explore. It is unfeasible to
explore all of them, or even a large part of
them. Therefor, in total 19 test cases were
defined to evaluate the EA of the schedule
simulator. In these, also invalid test cases are

incorporated in order to investigate how the EA
deals with them.

5.2 Test runs
After the test cases are created, we start the
EA with the defined settings. For every test
case provided we run the algorithm 10 times,
with different values for the random seed,
allowing us to compute average performance
afterwards. We need to have a different
random seed for each run since we are using a
pseudo-random number generator.

5.3 Test results and evaluation
It goes to far to describe here in detail the
results of all the tests executed. As a matter of
fact, the simulator used in the familiarisation
study and all the results have been described
in great detail in the master’s thesis of Mischa
Jansen [9].

At this stage we want to summarise the major
findings of the EA research.

- Proper design of the encoding of a
observation schedule request in a
chromosome and decoding the
chromosome into a observation schedule
is essential

A natural way to represent a schedule in a
chromosome is to define a gene for every time
slot. This approach leads to an unwanted
break up of observations that spend time slots.
An indirect representation was used, where the
sequence in the chromosome determines the
order in which the decoder places the
observations into a schedule.

This decoder requires careful design. It is
tempting to make this decoder intelligent (using
knowledge of constraints and preferences
when placing the observations), but this may
interfere with the operation of the EA. In such
situation certain permutations are ruled out
which could lead to a better result.

- None of the runs resulted in a completely
valid schedule

The results indicate that special measures are
needed to come up with valid schedules, since
the “best” individuals still violate some of the
constraints. Therefore the schedules cannot be
used directly, but rather some post processing
is required to turn them into valid schedules.
Some thoughts on this are given in the
recommendations.

- Evolutionary computation seems to be a
promising approach



The goal of the specific EA study was to
examine if evolutionary computation
techniques can be used to solve the LOFAR
observation scheduling problem. Based on the
results we can conclude that the EA performs
good enough, since the algorithm shows
convergence towards a good solution.
Although the results are not always valid, the
evolutionary approach certainly promises to be
a good approach to handling the problem. For
a more successful scheduling engine additions
and improvements to the EA are required.

- Comparison of the results against other
methods is difficult, since we only
implemented an EA to solve the problem

Since we only implemented an EA we cannot
compare the results to other more traditional
techniques. Furthermore, the results obtained
are all based on test cases created by the test
case generator. We cannot be sure that these
test cases compare to problems as will be
encountered when the telescope starts
functioning.

5.4 Recommendations
Based on the preliminary test results the
following recommendations were made:

- Continue with the EA

- Improve the decoding-step of the algorithm

- Repair invalid schedules, or at least
remove observations until a valid schedule
emerges

- Experiment with overbooking the schedule.
This requires the test case generator to be
adapted, since it cannot create
overbooked schedules

- Allow the scheduler to repair and override
the automatic scheduling

- Define a good test & validation plan for the
development phase

6. Conclusion
The first results of the study demonstrate that
evolutionary algorithms indeed seem suitable
for implementation in a telescope observation
schedule engine. The next step will be
improving the schedule simulator with LOFAR
representative functionality, such as
observation types and virtual instruments.

Together with other functionality’s that will be
developed by Fokker Space within its R&D
program in support of LOFAR, the schedule
simulator will be implemented as the schedule
engine within a prototype for the LOFAR
Specification & Scheduling Segment. The first
results of improving the schedule engine are
expected by Summer 2002. Incorporation of
this engine in the prototype is expected in the
second half of 2002.
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